
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,976 |
تعداد دریافت فایل اصل مقاله | 7,656,411 |
Semi-Fredholmness on a weighted geometric realization of 2-simplexes and 3- simplexes | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 3، دوره 14، شماره 10، دی 2023، صفحه 19-34 اصل مقاله (427.84 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.26602.3363 | ||
نویسندگان | ||
Azeddine Baalal1؛ Khalid Hatim* 2 | ||
1Laboratoire de Mathematiques Fondamentales et Appliquees, Departement de Mathematiques et Informatique, Faculte des Sciences Ain Chock, Universite Hassan II de Casablanca, Morocco | ||
2Laboratoire de Mathematiques Fondamentales et Appliquees, Faculte des Sciences Ain Chock, Universite Hassan II de Casablanca, Morocco | ||
تاریخ دریافت: 23 اسفند 1400، تاریخ بازنگری: 30 فروردین 1402، تاریخ پذیرش: 07 خرداد 1402 | ||
چکیده | ||
In this present article, we introduce the notion of oriented $2$-simplexes and the notion of oriented $3$-simplexes and we use them to create a new framework that we call a weighted geometric realization of $2$-simplexes and $3$-simplexes. Next, we define the weighted geometric realization Gauss-Bonnet operator $L$. After that, we present and study the non-parabolicity at the infinity of $L$. Finally, we develop general conditions to ensure semi-Fredholmness of $L$ based on its non-parabolicity at infinity. | ||
کلیدواژهها | ||
Weighted geometric realization of 2-simplexes and 3-simplexes؛ weighted geometric realization Gauss-Bonnet operator؛ non-parabolicity at infinity؛ semi-Fredholmness | ||
مراجع | ||
[1] N. Anghel. An abstract index theorem on noncompact Riemannian manifolds, Houston J. Math. 19 (1993), no. 2, 223—237. [2] A. Baalal and K. Hatim, Weighted spectra on a weighted geometric realization of 2- simplexes and 3-simplexes, Discrete Math. Algorithms Appl. 15 (2023), no. 5, 2250130. [3] C. Carron, Un theoreme de l’indice relatif, Pacific J. Math. 198 (2001), 81–107. [4] F.R.K. Chung, Spectral graph theory, Reg. Conf. Ser. Math., Vol. 92, Amer., Math. Soc., Providence, RI, 1997. [5] Y. Colin de Verdi`ere, Spectre de Graphes, Cours Specialises, vol. 4, Soc. Math. France, 1998. [6] H. Danijela and J. Jost, Spectra of combinatorial Laplace operators on simplicial complexes, Adv. Math. 244 (2013), 303–336. [7] A.M. Duval, C.J. Klivans and J.L. Martin, Critical groups of simplicial complexes, Ann. Comb. 17 (2013), no. 1, 53–70. [8] D.L. Ferrario and R.A. Piccinini, Simplicial Structures in Topology, CMS Books in Mathematics, 2011. [9] M. Gaffney, Hilbert space methods in the theory of harmonic integrals, Ann. Math. 78 (1955), 426–444. [10] J. Gilbert and M.A. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge Studies in Advanced Mathematics 26, 1991. [11] A. Grigoryan, Analysis on Graphs, Lecture Notes. University Bielefeld, 2009. [12] X. Huang, M. Keller, J. Masamune and R.K. Wojciechowski, A note on self-adjoint extensions of the Laplacian on weighted graphs, J. Funct. Anal. 265 (2013), 1556–1578. [13] B. Mohar and W. Woess, A survey on spectra of infinite graphs, J. Bull. Lond. Math. Soc. 21, No.3, 209-234, 1989. [14] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Academic Press, 1978. [15] M.A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag Berlin Heidelberg New York, 2001. | ||
آمار تعداد مشاهده مقاله: 16,074 تعداد دریافت فایل اصل مقاله: 180 |