
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,805 |
تعداد دریافت فایل اصل مقاله | 7,656,333 |
Fekete-Szegö problem for two new subclasses of bi-univalent functions defined by Bernoulli polynomial | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 1، دوره 15، شماره 10، دی 2024، صفحه 1-10 اصل مقاله (414.83 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.30115.4336 | ||
نویسندگان | ||
Yunus Korkmaz؛ İbrahim Aktaş* | ||
Karamanoglu Mehmetbey University, Kamıl Ozdag Science Faculty, Department of Mathematics, Karaman, Turkiye | ||
تاریخ دریافت: 15 اسفند 1401، تاریخ پذیرش: 27 مهر 1402 | ||
چکیده | ||
This investigation deals with two new subclasses of analytic and bi-univalent functions defined by Bernoulli polynomial. In this paper, coefficient estimation and Fekete-Szegö problems are solved for these newly defined function subclasses. In addition, certain remarks are indicated for the subclasses of bi-starlike and bi-convex functions. | ||
کلیدواژهها | ||
Bi-univalent function؛ coefficient estimates؛ Fekete-Szegö functional؛ Bernoulli polynomials | ||
مراجع | ||
[1] I. Aktas and N. Yılmaz, Initial coefficients estimate and Fekete-Szego problems for two new subclasses of biunivalent functions, Konuralp J. Math. 10 (2022), no. 1, 138–148. [2] T. Al-Hawary, A. Amourah, and B.A. Frasin, Fekete–Szego inequality for bi-univalent functions by means of Horadam polynomials, Bol. Soc. Mat. Mex. 27 (2021), 1–12. [3] A. Amourah, B.A. Frasin, and T. Abdeljawad, Fekete–Szego inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials, J. Funct. Spaces 2021 (2021), 5574673. [4] A. Amourah, B.A. Frasin, M. Ahmad, and F. Yousef, Exploiting the Pascal distribution series and Gegenbauer polynomials to construct and study a new subclass of analytic bi-univalent functions, Symmetry 14 (2022), no. 1, 147. [5] D.A. Brannan and T.S. Taha On some classes of bi-univalent function, Stud.Univ. Babes-Bolyai Math. 31 (1986), 70–77. [6] M. Buyankara and M. Caglar, On Fekete-Szego problem for a new subclass of bi-univalent functions defined by Bernoulli polynomials, Acta Univ. Apulensis Math. Inform. 71 (2022) 137–145. [7] M. Buyankara, M. Caglar and LI. Cotırla, New subclasses of bi-univalent functions with respect to the symmetric points defined by Bernoulli polynomials, Axioms 11 (2022), 652. [8] L.I. Cotırla, New classes of analytic and bi-univalent functions, AIMS Math. 6 (2021), 10642–0651. [9] P.L. Duren, Univalent Functions, Springer Science and Business Media, 2001. [10] J. Dziok, A general solution of the Fekete-Szego problem, Bound. Value Probl. 2013 (2013), no. 1, 1–13. [11] M. Fekete and G. Szego Eine bemerkung uber ungerade schlichte funktionen, J. Lond. Math. Soc. 1 (1933), no. 2, 85–89. [12] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569–1573. [13] H.O. Guney, G. Murugusundaramoorthy, and J. Soko l, Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Acta Univ. Sapientiae Math. 10 (2018), no. 1, 70–84. [14] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63–68. [15] S.S. Miller and P.T. Mocanu, Differential Subordinations, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, 2000. [16] P. Natalini and A. Bernardini, A generalization of the Bernoulli polynomials, J. Appl. Math. 2003 (2003), no. 3, 155–163. [17] H. Orhan, I. Aktas, and H. Arıkan, On new subclasses of bi-univalent functions associated with the (p, q)-Lucas polynomials and bi-Bazilevic type functions of order ρ + ξ, Turk. J. Math. 47 (2023), no. 1, 98–109. [18] GI. Oros and LI. Cotırla, Coefficient estimates and the Fekete–Szego problem for new classes of m-fold symmetric bi-univalent functions, Mathematics 10 (2022), 129. [19] H.M. Srivastava, S. Altınkaya, and S. Yalcın, Certain Subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A Sci. 43 (2019), 1873–1879. [20] H.M. Srivastava, S. Gaboury, and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat. 28 (2017), 693–706. [21] H.M. Srivastava, A.K. Mishra, and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188–1192. [22] H.M. Srivastava, G. Murugusundaramoorthy, and K. Vijaya, Coefficient estimates for some families of bi-Bazilevic functions of the Ma-Minda type involving the Hohlov operator, J. Class. Anal. 2 (2013), no. 2, 167–181. [23] A.K. Wanas and L.I. Cotırla, Initial coefficient estimates and Fekete–Szego inequalities for new families of biunivalent functions governed by (p − q) Wanas operator, Symmetry 13 (2021), no. 11, 2118. [24] A.K.Wanas and L.I. Cotırla, New applications of Gegenbauer polynomials on a new family of bi-Bazilevic functions governed by the q-Srivastava-Attiya Operator, Mathematics 10 (2022), no. 8, 1309. [25] N. Yılmaz and I. Aktas, On some new subclasses of bi-univalent functions defined by generalized bivariate Fibonacci-polynomial, Afr. Mat. 33 (2022), no. 2, 59. [26] P. Zaprawa, On the Fekete-Szego problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), no. 1, 169–178. | ||
آمار تعداد مشاهده مقاله: 823 تعداد دریافت فایل اصل مقاله: 261 |