
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,934 |
تعداد دریافت فایل اصل مقاله | 7,656,390 |
$\tilde{O}$rder-norm continuous operators and $\tilde{o}$rder weakly compact operators | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 15، دوره 16، شماره 3، خرداد 2025، صفحه 167-174 اصل مقاله (377.87 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.32603.4858 | ||
نویسندگان | ||
Sajjad Ghanizadeh Zare؛ Kazem Haghnejad Azar* ؛ Mina Matin؛ Somayeh Hazrati | ||
Department of Mathematics and Applications, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran | ||
تاریخ دریافت: 16 آذر 1402، تاریخ پذیرش: 24 بهمن 1402 | ||
چکیده | ||
Let $E$ be a sublattice of a vector lattice $F$. A continuous operator $T$ from $E$ into a normed vector space $X$ is said to be $\tilde{o}$rder-norm continuous if $x_\alpha\xrightarrow{Fo}0$ implies $T(x_\alpha)\xrightarrow{\Vert.\Vert}0$ for every $(x_{\alpha})_{\alpha \in A}\subseteq E$. This paper aims to investigate the properties of this new class of operators and explore their relationships with existing classifications of operators. We introduce a new class of operators called $\tilde{o}$rder weakly compact operators. A continuous operator $T: E \rightarrow X $ is considered $\tilde{o}$rder weakly compact if $ T(A) $ in $X$ is a relatively weakly compact set for every $Fo$-bounded $A\subseteq E$. In this manuscript, we examine various properties of this class of operators and explore their connections with $\tilde{o}$rder-norm continuous operators. | ||
کلیدواژهها | ||
Vector lattice؛ property $(F)$؛ $\tilde{o}$-convergence؛ order-to-norm continuous operator؛ $\tilde{o}$rder-norm continuous operator؛ $\tilde{o}$rder weakly compact | ||
مراجع | ||
[1] C.D. Aliprantis and O. Burkinshaw, Positive Operators, Springer Science, Business Media, 2006. [2] S. Alpay, B. Altin, and C. Tonyali, On property (b) of vector lattice, Positivity 7 (2003), no. 1, 135–139. [3] B. Aqzzouz and J. Hmichane, Some results on order weakly compact operators, Math. Bohemica 134 (2009), no. 4, 359–367. [4] K. Haghnejad Azar, A generalization of order convergence in the vector lattices, Facta Univer. Ser. Math. Inf. 37 (2022), 521–528. [5] Y. Deng, M. O’Brien, and V.G. Troitsky, Unbounded norm convergence in Banach lattices, Positivity. 21 (2017), 963–974. [6] N. Gao, V.G. Troitsky, and F. Xanthos, Uo-Convergence and its applications to Cesaro means in Banach lattices, Isr. J. Math. 220 (2017), 649—689. [7] N. Gao and F. Xanthos, Unbounded order convergence and application to martingales without probability, J. Math. Anal. Appl. 415 (2014), 931–947. [8] S.A. Jalili, K. Haghnejad Azar, and M.B. Farshbaf Moghimi, Order-to-topology continuous operators, Positivity 25 (2021), 1313–1322. [9] K. Haghnejad Azar, M. Matin, and R. Alavizadeh, Unbounded order-norm continuous and unbounded norm continuous operators, Filomat 35 (2021), no. 13, 4417–4426. [10] K. Haghnejad Azar, M. Matin, and R. Alavizadeh, Weakly Unbounded Norm Topology and wun-Dunford-Pettis Operators, Rend. Circ. Mat. Palermo, II. Ser 72 (2023), 2745–2760. [11] K.D. Schmidt, On the modulus of weakly compact operators and strongly additive vector measures, Proc. Amer. Math. Soc. 102 (1988), no. 4, 862–866. | ||
آمار تعداد مشاهده مقاله: 313 تعداد دریافت فایل اصل مقاله: 197 |