[1] Hamzah, H., Hasan, S.I., Küçüka, S., 2020. Numerical study of thermal transport in a flat-plate solar collector using novel absorber plate, in: Environmentally-Benign Energy Solutions. Springer, pp. 649–662.
[2] Pazarlioğlu, H.K., Ekiciler, R., Arslan, K., 2021. Numerical analysis of effect of impinging jet on cooling of solar air heater with longitudinal fins. Heat Transf. Res. 52.
[3] Mwesigye, A., Huan, Z., Meyer, J.P., 2016b. Thermal performance and entropy generation analysis of a high concentration ratio parabolic trough solar collector with Cu-Therminol® VP-1 nanofluid. Energy Convers. Manag. 120, pp.449–465.
[4] Bellos, E., Tzivanidis, C., 2019. Alternative designs of parabolic trough solar collectors. Prog. Energy Combust. Sci. 71, pp.81–117.
[5] Myers Jr, P.D., Goswami, D.Y., 2016. Thermal energy storage using chloride salts and their eutectics. Appl. Therm. Eng. 109, pp. 889–900.
[6] Bellos, E., Tzivanidis, C., Said, Z., 2020. A systematic parametric thermal analysis of nanofluid-based parabolic trough solar collectors. Sustain. Energy Technol. Assessments 39, 100714.
[7] Ekiciler, R., Arslan, K., Turgut, O., Kurşun, B., 2020. Effect of hybrid nanofluid on heat transfer performance of parabolic trough solar collector receiver. Journal of Thermal Analysis and Calorimetry, 143, pp.1637-1654.
[8] Akbarzadeh, S., Valipour, M.S., 2020. Energy and exergy analysis of a parabolic trough collector using helically corrugated absorber tube. Renew. Energy 155, pp. 735–747.
[9] Vahidinia, F., 2024. Evaluation of energy and exergy of a parabolic trough solar collector equipped with internal fin and star turbulator absorber tube. J. Appl. Comput. Sci. Mech. 36, pp. 97–114. https://doi.org/10.22067/jacsm.2023.83484.1199
[10] Zhu, X., Zhu, L., Zhao, J., 2017. Wavy-tape insert designed for managing highly concentrated solar energy on absorber tube of parabolic trough receiver. Energy 141, pp. 1146–1155.
[11] Mwesigye, A., Bello-Ochende, T., Meyer, J.P., 2016a. Heat transfer and entropy generation in a parabolic trough receiver with wall-detached twisted tape inserts. Int. J. Therm. Sci. 99, pp. 238–257.
[12] Şahin, H.M., Baysal, E., Dal, A.R., Şahin, N., 2015. Investigation of heat transfer enhancement in a new type heat exchanger using solar parabolic trough systems. Int. J. Hydrogen Energy 40, pp. 15254–15266.
[13] Song, X., Dong, G., Gao, F., Diao, X., Zheng, L., Zhou, F., 2014. A numerical study of parabolic trough receiver with nonuniform heat flux and helical screw-tape inserts. Energy 77, pp. 771–782.
[14] Bellos, E., Tzivanidis, C., 2018a. Investigation of a star flow insert in a parabolic trough solar collector. Appl. Energy 224, pp.86–102.
[15] Allauddin, U., Rafique, M.U., Malik, O., Rashid, O., Waseem, A., King, P., Karim, M., Almond, H., 2023. Investigation of the Thermo-hydraulic performance of a roughened Parabolic trough collector. Appl. Therm. Eng. 219, 119523.
[16] Al-Aloosi, W., Alaiwi, Y., Hamzah, H., 2023. Thermal performance analysis in a parabolic trough solar collector with a novel design of inserted fins. Case Stud. Therm. Eng. 49, 103378.
[17] Hamzah, H., Albojamal, A., Sahin, B., Vafai, K., 2021. Thermal management of transverse magnetic source effects on nanofluid natural convection in a wavy porous enclosure. J. Therm. Anal. Calorim. 143, pp.2851–2865.
[18] Majidi, M., Bijarchi, M.A., Arani, A.G., Rahimian, M.H., Shafii, M.B., 2022. Magnetic field-induced control of a compound ferrofluid droplet deformation and breakup in shear flow using a hybrid lattice Boltzmann-finite difference method. Int. J. Multiph. Flow 146, 103846.
[19] Vahidinia, F., Rahmdel, M., 2015. Turbulent mixed convection of a nanofluid in a horizontal circular tube with non-uniform wall heat flux using a two-phase approach. Challenges Nano Micro Scale Sci. Technol. 3, pp.106–117.
[20] Farzaneh, H., Behzadmehr, A., Samimi, A., 2021. Stability of Nanofluid-Surfactants as Volumetric Receivers in Parabolic Trough Solar Collectors; a Molecular Dynamic Approach. Challenges Nano Micro Scale Sci. Technol. 9, pp.109–116.
[21] Ekiciler, R., Arslan, K., Turgut, O., 2023. Application of nanofluid flow in entropy generation and thermal performance analysis of parabolic trough solar collector: experimental and numerical study. J. Therm. Anal. Calorim. 148, pp.7299–7318.
[22] Mwesigye, A., Huan, Z., Meyer, J.P., 2015. Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil–Al2O3 nanofluid. Appl. Energy 156, pp.398–412.
[23] Mwesigye, A., Yılmaz, İ.H., Meyer, J.P., 2018. Numerical analysis of the thermal and thermodynamic performance of a parabolic trough solar collector using SWCNTs-Therminol®VP-1 nanofluid. Renew. Energy 119, pp.844–862. https://doi.org/10.1016/j.renene.2017.10.047
[24] Dou, L., Ding, B., Zhang, Q., Kou, G., Mu, M., 2023. Numerical investigation on the thermal performance of parabolic trough solar collector with synthetic oil/Cu nanofluids. Appl. Therm. Eng. 227, 120376.
[25] Nabi, H., Pourfallah, M., Gholinia, M., Jahanian, O., 2022. Increasing heat transfer in flat plate solar collectors using various forms of turbulence-inducing elements and CNTs-CuO hybrid nanofluids. Case Stud. Therm. Eng. 33, 101909.
[26] Ahmadi, M.H., Ghazvini, M., Sadeghzadeh, M., Nazari, M.A., Ghalandari, M., 2019. Utilization of hybrid nanofluids in solar energy applications: a review. Nano-Structures & Nano-Objects 20, 100386.
[27] Bellos, E., Tzivanidis, C., 2018b. Thermal analysis of parabolic trough collector operating with mono and hybrid nanofluids. Sustain. Energy Technol. Assessments 26, pp.105–115.
[28] Al-Oran, O., Lezsovits, F., Aljawabrah, A., 2020. Exergy and energy amelioration for parabolic trough collector using mono and hybrid nanofluids. J. Therm. Anal. Calorim. pp.1–18.
[29] Khan, M.S., Abid, M., Yan, M., Ratlamwala, T.A.H., Mubeen, I., 2021. Thermal and thermodynamic comparison of smooth and convergent‐divergent parabolic trough absorber tubes with the application of mono and hybrid nanofluids. Int. J. Energy Res. 45, pp.4543–4564.
[30] Vahidinia, F, Khorasanizadeh, H., Aghaei, A., 2021. Comparative energy, exergy and CO2 emission evaluations of a LS-2 parabolic trough solar collector using Al2O3/SiO2-Syltherm 800 hybrid nanofluid. Energy Convers. Manag. 245, 114596.
[31] Aliehyaei, M., Joshaghani, A.H., Najafizadeh, M.M., 2023. Energy, exergy, economic and environmental analysis of parabolic trough collector containing hybrid nanofluid equipped with turbulator. Eng. Anal. Bound. Elem. 150, pp.492–506.
[32] Shaker, B., Gholinia, M., Pourfallah, M., Ganji, D.D., 2022. CFD analysis of Al2O3-syltherm oil Nanofluid on parabolic trough solar collector with a new flange-shaped turbulator model. Theor. Appl. Mech. Lett. 12, 100323.
[33] Samiezadeh, S., Khodaverdian, R., Doranehgard, M.H., Chehrmonavari, H., Xiong, Q., 2022. CFD simulation of thermal performance of hybrid oil-Cu-Al2O3 nanofluid flowing through the porous receiver tube inside a finned parabolic trough solar collector. Sustain. Energy Technol. Assessments 50, 101888.
[34] Dezfulizadeh, A., Aghaei, A., Sheikhzadeh, G.A., 2023. Comprehensive 3E analyses of a parabolic trough collector equipped with an innovative combined twisted turbulator. Eng. Anal. Bound. Elem. 150, pp.507–527.
[35] Niknejadi, M., Alizadeh, A. ad, Zekri, H., Ruhani, B., Nasajpour-Esfahani, N., Smaisim, G.F., 2023. Numerical simulation of the thermal-hydraulic performance of solar collector equipped with vector generators filled with two-phase hybrid nanofluid Cu-TiO2/H2O. Eng. Anal. Bound. Elem. 151, pp.670–685.
[36] Pazarlıoğlu, H.K., Ekiciler, R., Arslan, K., Mohammed, N.A.M., 2023a. Exergetic, Energetic, and entropy production evaluations of parabolic trough collector retrofitted with elliptical dimpled receiver tube filled with hybrid nanofluid. Appl. Therm. Eng. 223, 120004.
[37] Hosseini Esfahani, A., Aliehyaei, M., Hassani Joshaghani, A., Najafizadeh, M.M., 2023. Economic, Exergy, and Environmental Analyses of Parabolic Trough Solar Collector with Turbulator Containing Polymer Hybrid Nanofluid. Eng. Energy Manag. 12, pp.80–99.
[38] Gupta, S.K., 2023. A short & updated review of nanofluids utilization in solar parabolic trough collector. Mater. Today Proc.
[39] Aqachmar, Z., Allouhi, A., Jamil, A., Gagouch, B., Kousksou, T., 2019. Parabolic trough solar thermal power plant Noor I in Morocco. Energy 178, pp.572–584.
[40] Vahidinia, F, Khorasanizadeh, H., Aghaei, A., 2023. Energy, exergy, economic and environmental evaluations of a finned absorber tube parabolic trough collector utilizing hybrid and mono nanofluids and comparison. Renew. Energy 205, pp.185–199.
[41] Mwesigye, A., Bello-ochende, T., Meyer, J.P., 2013. Numerical investigation of entropy generation in a parabolic trough receiver at different concentration ratios. Energy 53, pp.114–127. https://doi.org/10.1016/j.energy.2013.03.006
[42] Huang, Z., Yu, G.L., Li, Z.Y., Tao, W.Q., 2015. Numerical study on heat transfer enhancement in a receiver tube of parabolic trough solar collector with dimples, protrusions and helical fins. Energy Procedia 69, pp.1306–1316.
[43] Vahidinia, Farhad, Khorasanizadeh, H., Aghaei, A., 2023. Study of Thermal and Hydrodynamic Performance of a Parabolic Trough Solar Collector Using Hybrid MWCNT/Fe3O4-Therminol VP-1 Nanofluid. Energy Eng. Manag. 12, 82–95.
[44] Vahidinia, Farhad, Khorasanizadeh, H., Aghaei, A., 2021. Investigation of energy and exergy performance of parabolic trough solar collector with wind speed variations. J. Aeronaut. Eng. 23, pp.109–124.
[45] Behar, O., Khellaf, A., Mohammedi, K., 2015. A novel parabolic trough solar collector model–Validation with experimental data and comparison to Engineering Equation Solver (EES). Energy Convers. Manag. 106, pp.268–281.
[46] Duffie, J.A., Beckman, W.A., Blair, N., 2020. Solar Engineering of Thermal Processes, Photovoltaics and Wind. John Wiley & Sons.
[47] Ekiciler, R., 2024a. Performing SiO2-MWCNT/water hybrid nanofluid with differently shaped nanoparticles to enhance first-and second-law features of flow by considering a two-phase approach. J. Therm. Anal. Calorim. 149, pp.1725–1744.
[48] Ekiciler, R., 2024b. Analysis and evaluation of the effects of uniform and non-uniform wall corrugation in a pipe filled with ternary hybrid nanofluid. Arab. J. Sci. Eng. 49, pp.2681–2694.
[49] Pazarlıoğlu, H.K., Tepe, A.Ü., Tekir, M., Arslan, K., 2022. Effect of new design of elongated jet hole on thermal efficiency of solar air heater. Therm. Sci. Eng. Prog. 36, 101483.
[50] Swinbank, W.C., 1963. Long‐wave radiation from clear skies. Q. J. R. Meteorol. Soc. 89, pp.339–348.
[51] Mullick, S.C., Nanda, S.K., 1989. An improved technique for computing the heat loss factor of a tubular absorber. Sol. Energy 42, pp.1–7.
[52] Mwesigye, A., Meyer, J.P., 2017. Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios. Appl. Energy 193, pp.393–413.
[53] Forristall, R., 2003. Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver. (No. NREL/TP-550-34169). National Renewable Energy Lab.(NREL), Golden, CO (United States).
[54] Petela, R., 2003. Exergy of undiluted thermal radiation. Sol. Energy 74, pp.469–488.
[55] Vahidinia, F., Khorasanizadeh, H., 2024. Comparative energy, exergy and entropy generation study of a minichannel and a conventional solar flat plat collectors. Energy 304, 132232.
[56] Pazarlıoğlu, H.K., Gürsoy, E., Gürdal, M., Said, Z., Arslan, K., Gedik, E., 2024. Numerical simulation of sudden expansion tubes with Ag-MgO nanofluid and innovative fin structure: A thermo-fluidic analysis. Int. J. Heat Fluid Flow 108, 109448.
[57] Bellos, E., Tzivanidis, C., Tsimpoukis, D., 2018. Enhancing the performance of parabolic trough collectors using nanofluids and turbulators. Renew. Sustain. Energy Rev. 91, pp.358–375.
[58] Malekan, M., Khosravi, A., Syri, S., 2019. Heat transfer modeling of a parabolic trough solar collector with working fluid of Fe3O4 and CuO/Therminol 66 nanofluids under magnetic field. Appl. Therm. Eng. 163, 114435.
[59] Ekiciler, R., 2024c. Influence of uniform wall corrugations on convective heat transfer through a convergent–divergent nozzle by using mono and hybrid nanofluids. J. Therm. Anal. Calorim. 149, pp.1565–1579.
[60] Pazarlıoğlu, H.K., Gürsoy, E., Gürdal, M., Tekir, M., Gedik, E., Arslan, K., Taşkesen, E., 2023b. The first and second law analyses of thermodynamics for CoFe2O4/H2O flow in a sudden expansion tube inserted elliptical dimpled fins. Int. J. Mech. Sci. 246, 108144.
[61] Jasim, L.M., Hamzah, H., Canpolat, C., Sahin, B., 2021. Mixed convection flow of hybrid nanofluid through a vented enclosure with an inner rotating cylinder. Int. Commun. Heat Mass Transf. 121, 105086.
[62] Ekiciler, R., 2023. Heat transfer enhancement of a slot-confined and submerged impinging jet utilizing lamina-shaped CoFe3O2/water nanofluid. Int. J. Energy Stud. 8, pp.167–187.
[63] Mwesigye, A., Bello-Ochende, T., Meyer, J.P., 2014. Heat transfer and thermodynamic performance of a parabolic trough receiver with centrally placed perforated plate inserts. Appl. Energy 136, pp.989–1003.
[64] Bergman, T.L., Lavine, A., Incropera, F.P., Dewitt, D.P., 2017. Fundamentals of heat and mass transfer. John Wiley & Sons New York.
[65] Dudley, V.E., Kolb, G.J., Mahoney, A.R., Mancini, T.R., Matthews, C.W., Sloan, M., Kearney, D., 1994. Test results: SEGS LS-2 solar collector. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
[66] Bellos, E., Tzivanidis, C., Antonopoulos, K.A., Gkinis, G., 2016. Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube. Renew. Energy 94, pp.213–222.
[67] Caliskan, H., 2017. Energy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectors. Renew. Sustain. Energy Rev. 69, pp.488–492.