
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,756 |
تعداد دریافت فایل اصل مقاله | 7,656,167 |
Non-resonant Nabla fractional boundary value problems | ||
International Journal of Nonlinear Analysis and Applications | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 27 آبان 1403 اصل مقاله (397.56 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.26401.4430 | ||
نویسنده | ||
Jagan Mohan Jonnalagadda* | ||
Department of Mathematics, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana 500078, India | ||
تاریخ دریافت: 15 اردیبهشت 1402، تاریخ بازنگری: 15 مهر 1402، تاریخ پذیرش: 25 مهر 1402 | ||
چکیده | ||
We consider two simple non-resonant boundary value problems for a nabla fractional difference equation. First, we construct associated Green's functions and obtain some of their properties. Under suitable constraints on the nonlinear part of the nabla fractional difference equation, we deduce sufficient conditions for the existence of solutions to the considered problems through an appropriate fixed point theorem. We also provide two examples to demonstrate the applicability of the established results. | ||
کلیدواژهها | ||
Nabla fractional difference؛ boundary value problem؛ Green's function؛ resonance؛ memory property؛ fixed point؛ existence of a solution | ||
مراجع | ||
[1] R.P. Agarwal, M. Meehan, and D. O’Regan, Fixed Point Theory and Applications, Cambridge University Press, Cambridge, 2001. [2] H.M. Ahmed and M. Alessandra Ragusa, Nonlocal controllability of Sobolev-type conformable fractional stochastic evolution inclusions with Clarke subdifferential, Bull. Malays. Math. Sci. Soc. 45 (2022), no. 6, 3239–3253. [3] K. Ahrendt and C. Kissler, Green’s function for higher-order boundary value problems involving a nabla Caputo fractional operator, J. Difference Equ. Appl. 25 (2019), no. 6, 788–800. [4] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhauser Boston Inc., Boston, MA, 2001. [5] C. Chen, M. Bohner, and B. Jia, Existence and uniqueness of solutions for nonlinear Caputo fractional difference equations, Turk. J. Math. 44 (2020), no. 3, 857–869. [6] Y. Gholami and K. Ghanbari, Coupled systems of fractional ∇-difference boundary value problems, Differ. Equ. Appl. 8 (2016), no. 4, 459–470. [7] C. Goodrich and A.C. Peterson, Discrete Fractional Calculus, Springer, Cham, 2015. [8] L. Gu, Q. Zhong, and Z. Shao, On multiple positive solutions for singular fractional boundary value problems with Riemann–Stieltjes integrals, J. Funct. Spaces 2023 (2023), 1–7. [9] A. Ikram, Lyapunov inequalities for nabla Caputo boundary value problems, J. Difference Equ. Appl. 25 (2019), no. 6, 757–775. [10] J.M. Jonnalagadda, Solutions of fractional nabla difference equations - existence and uniqueness, Opuscula Math. 36 (2016), no. 2, 215–238. [11] J.M. Jonnalagadda, On two-point Riemann–Liouville type nabla fractional boundary value problems, Adv. Dyn. Syst. Appl. 13 (2018), no. 2, 141–166. [12] J.M. Jonnalagadda and N.S. Gopal, Green’s function for a discrete fractional boundary value problem, Differ. Equ. Appl. 14 (2022), no. 2, 163–178. [13] Z. Laadjal, T. Abdeljawad, and F. Jarad, Some results for two classes of two-point local fractional proportional boundary value problems, Filomat 37 (2023), no. 21, 7199–7216. | ||
آمار تعداد مشاهده مقاله: 39 تعداد دریافت فایل اصل مقاله: 56 |