
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,855 |
تعداد دریافت فایل اصل مقاله | 7,656,347 |
On a class of multivalent meromorphic functions defined by the combinational differential operator | ||
International Journal of Nonlinear Analysis and Applications | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 18 دی 1403 اصل مقاله (387.84 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.35082.5237 | ||
نویسندگان | ||
Mohammadreza Foroutan* 1؛ Mostafa Soltani1؛ Ali Ebadian2 | ||
1Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran | ||
2Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran | ||
تاریخ دریافت: 30 مرداد 1403، تاریخ پذیرش: 15 مهر 1403 | ||
چکیده | ||
In this paper, we define a class of meromorphically multivalent functions in $\mathbb{U^{\ast}}=\{z:z\in\mathbb{C}:0<|z|<1\}$ by using a differential operator. Important properties of this class such as coefficient estimates, distortion theorem, radius of starlikeness and convexity, closure theorems, and convolution properties are obtained. We also study $\delta$-neighboorhoods and partial sums for this class. | ||
کلیدواژهها | ||
meromorphic functions؛ multi-valent functions؛ differential operator؛ coefficient estimates؛ convolution؛ neighborhoods | ||
مراجع | ||
[1] M.K. Aouf, A class of meromorphic multivalent functions with positive coefficients, Taiwan. J. Math. 12 (2008), 2517–2533. [2] W.G. Atshan and S.R. Kulkarni, On application of differential subordination for certain subclass of meromorphically p-valent functions with positive coefficients defined by linear operator, J. Ineq. Pure Appl. Math. 10 (2009), 1–11. [3] Sh. Najafzadeh and A. Ebadian, Convex family of meromorphically multivalent functions on connected sets, Math. Com. Mod. 57 (2013), 301–305. [4] H. Orhan, D. Raducanu, and E. Deniz, Subclasses of meromorphically multivalent functions defined by a differential operator, Comput. Math. Appl. 61 (2011), 966–979. [5] A. Schlid and H. Silverman, Convolution of univalent functions with negative coefficients, Ann. Univ. Curie-Sklodowska Sect. A 29 (1975), 99–107. [6] P.M. Sharma, Iterative combinations for Srivastava-Gupta operators, Asian-Eur. J. Math. 14 (2021), no. 7, 2150108. [7] H.M. Srivastava and V. Gupta, A family of summation-integral type operators, Math. Comput. Model. 37 (2003), no. 12-13, 1307–1315. | ||
آمار تعداد مشاهده مقاله: 27 تعداد دریافت فایل اصل مقاله: 68 |