
تعداد نشریات | 21 |
تعداد شمارهها | 642 |
تعداد مقالات | 9,385 |
تعداد مشاهده مقاله | 68,093,999 |
تعداد دریافت فایل اصل مقاله | 34,419,925 |
Influence of Aggregate Gradation and Pore Structure on Porous Asphalt Mixture Permeability and Resilient Modulus | ||
Journal of Rehabilitation in Civil Engineering | ||
مقاله 9، دوره 14، شماره 1 - شماره پیاپی 41، اردیبهشت 2026 اصل مقاله (1.8 M) | ||
نوع مقاله: Regular Paper | ||
شناسه دیجیتال (DOI): 10.22075/jrce.2024.33599.2027 | ||
نویسندگان | ||
Gummadi Chiranjeevi* 1؛ S Shankar2 | ||
1Research Scholar, Department of Civil Engineering, Transportation Division, National Institute of Technology, Warangal -506004, India | ||
2Associate Professor, Department of Civil Engineering, Transportation Division, National Institute of Technology, Warangal -506004, India | ||
تاریخ دریافت: 03 فروردین 1403، تاریخ بازنگری: 12 مرداد 1403، تاریخ پذیرش: 27 دی 1403 | ||
چکیده | ||
A porous asphalt mixture (PAM) is distinguished by its different porous structures, which allow water to move through it as quickly as possible, making drainage an essential component. Porous asphalt pavement (PAP) can maintain its permeability because the mixture contains voids that are interconnected with one another. Permeability, on the other hand, decreases as the proportion of particles in the gradation and the level of compaction increases. To generate various air-void structures, permeability was evaluated with specimens made from varying sizes and shapes of aggregates. The equipment that was used for this research was specifically designed. When compared directly with permeability, the findings indicate that the combination of multiple forms is not directly comparable. The permeability of PAM was observed to be affected by a variety of air void densities, which were observed. While there was a beneficial influence on permeability, there was a negative impact on the Resilient Modulus (MR), which was detected when there was an increase in the void content. The amount of air voids in the mixture substantially impacts the performance of porous asphalt mixtures. Open-Gr-I viscosity grade (VG30) bitumen has a permeability value of 0.394 cm/s, and the resilience modulus value for open-Gr-II mixtures that use a modified binder is 3494 MPa. Both of these values are relative to the permeability value. The drainage and stiffness metrics for the several combinations investigated in this study were considerably impacted by the gradation, the kind of binder, and the temperature conditions. Stormwater management is possible in PAP and improves the groundwater table. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Porous asphalt pavement؛ Permeability؛ Resilient-modulus؛ Drainage capacity؛ Air void structure؛ Stormwater | ||
مراجع | ||
[1] Hosokawa, H.; Gomi, A.; Tamai, A.; Kasahara, A. (2005). Hot in-place recycling of porous asphalt concrete, 4th International Conference on Maintenance and Rehabilitation of Pavements and Technological Control, MAIREPAV 2005, No. Figure 1, 1–9
[2] Hardiman M. Y. (2008). The Comparison of Engineering Properties Between Single and Double Layer Porous Asphalt Made of Packing Gradation, Civil Engineering Dimension, Vol. 10, No. 2, 82–88
[3] Norazman, C.; Wan, C.; Jaya, R. P.; Hamzah, M. O. (2012). Properties of Porous Asphalt Mixture Made With Styrene Butadiene Styrene under Long Term Oven Ageing, Vol. 486, 378–383. doi:10.4028/www.scientific.net/AMR.486.378
[4] Kamboozia, N.; Rad, S. M.; Saed, S. A. (2022). Laboratory Investigation of the Effect of Nano-ZnO on the Fracture and Rutting Resistance of Porous Asphalt Mixture under the Aging Condition and Freeze-Thaw Cycle, Vol. 34, No. 5, 1–17. doi:10.1061/(ASCE)MT.1943-5533.0004187
[5] Pouranian, M. R.; Imaninasab, R.; Shishehbor, M. (2020). The effect of temperature and stress level on the rutting performance of modified stone matrix asphalt. doi:10.1080/14680629.2018.1546221
[6] Nadeem, M.; Al-shamrani, A. M.; Jameel, M.; Khan, N. A.; Ibrahim, Z.; Akhtar, J. N. (2021). Case Studies in Construction Materials Stability and permeability characteristics of porous asphalt pavement : An experimental case study, Case Studies in Construction Materials, Vol. 15, No. November 2020, e00591. doi:10.1016/j.cscm.2021.e00591
[7] Mohd Shukry, N. A.; Hassan, N. A.; Abdullah, M. E.; Hainin, M. R.; Md Yusoff, N. I.; Jaya, R. P.; Mohamed, A. (2018). Effect of various filler types on the properties of porous asphalt mixture, IOP Conference Series: Materials Science and Engineering, Vol. 342, No. 1. doi:10.1088/1757-899X/342/1/012036
[8] Nahar, S.; Mohajeri, M.; Schmets, A.; Scarpas, A.; Van De Ven, M.; Schitter, G. (2013). First observation of blending-zone morphology at the interface of reclaimed Asphalt Binder and Virgin Bitumen, Transportation Research Record, No. 2370, 1–9. doi:10.3141/2370-01
[9] Briggs, J. F. (1996). Performance Assessment of Porous Asphalt for Stormwater Treatment
[10] Ma, X.; Li, Q.; Cui, Y. C.; Ni, A. Q. (2018). Performance of porous asphalt mixture with various additives, International Journal of Pavement Engineering, Vol. 19, No. 4, 355–361. doi:10.1080/10298436.2016.1175560
[11] Nakanishi, H.; Hamzah, M. O.; Mohd Hasan, M. R.; Karthigeyan, P.; Shaur, O. (2019). Mix design and application of porous asphalt pavement using Japanese technology, IOP Conference Series: Materials Science and Engineering, Vol. 512, No. 1. doi:10.1088/1757-899X/512/1/012026
[12] Yang, B.; Li, H.; Zhang, H.; Xie, N.; Zhou, H. (2019). Laboratory investigation on effects of microscopic void characteristics on properties of porous asphalt mixture, Construction and Building Materials, Vol. 213, 434–446. doi:10.1016/j.conbuildmat.2019.04.039
[13] Sangiorgi, C.; Eskandarsefat, S.; Tataranni, P.; Simone, A.; Vignali, V.; Lantieri, C.; Dondi, G. (2017). A complete laboratory assessment of crumb rubber porous asphalt, Construction and Building Materials, Vol. 132, 500–507. doi:10.1016/j.conbuildmat.2016.12.016
[14] Hagos, E. T.; Molenaar, A. A. A.; Van De Ven, M. F. C.; Voskuilen, J. L. M. (2007). Durability related investigation into porous asphalt, Advanced Characterisation of Pavement and Soil Engineering Materials - Proceedings of the International Conference on Advanced Characterisation of Pavement and Soil Engineering Materials, Vol. 1, 713–727
[15] Afonso, M. L.; Dinis-Almeida, M.; Fael, C. S. (2017). Study of the porous asphalt performance with cellulosic fibers, Construction and Building Materials, Vol. 135, 104–111. doi:10.1016/j.conbuildmat.2016.12.222
[16] Slebi-Acevedo, C. J.; Castro-Fresno, D.; Pascual-Muñoz, P.; Lastra-González, P. (2021). A combination of DOE–multi-criteria decision making analysis applied to additive assessment in porous asphalt mixture, International Journal of Pavement Engineering, Vol. 0, No. 0, 1–14. doi:10.1080/10298436.2020.1859508
[17] Alvarez, A. E.; Martin, A. E.; Estakhri, C. (2011). A review of mix design and evaluation research for permeable friction course mixtures, Construction and Building Materials, Vol. 25, No. 3, 1159–1166. doi:10.1016/j.conbuildmat.2010.09.038
[18] Chu, L.; Fwa, T. F. (2019). Functional sustainability of single- and double-layer porous asphalt pavements, Construction and Building Materials, Vol. 197, 436–443. doi:10.1016/j.conbuildmat.2018.11.162
[19] Ma, Y.; Chen, X.; Geng, Y.; Zhang, X. (2020). Effect of Clogging on the Permeability of Porous Asphalt Pavement, Advances in Materials Science and Engineering, Vol. 2020. doi:10.1155/2020/4851291
[20] Kathryn, L. (2007). Porous Asphalt Pavement designs: Proactive design for cold climate use, 105
[21] Alves, T. da C. L.; Shah, N. (2018). Construction Research Congress 2018, Proceeding of Construction Research Congress 2018, Vol. 1996, No. BuildingSMART 2007, 148–157
[22] Conzelmann, N. A.; Partl, M. N.; Clemens, F. J.; Müller, C. R.; Poulikakos, L. D. (2022). Effect of artificial aggregate shapes on the porosity, tortuosity, and permeability of their packings, Powder Technology, Vol. 397. doi:10.1016/j.powtec.2021.11.063
[23] Peng, B.; Han, S.; Han, X.; Zhang, H. (2021). Laboratory and field evaluation of noise characteristics of porous asphalt pavement, International Journal of Pavement Engineering, Vol. 0, No. 0, 1–14. doi:10.1080/10298436.2021.1893319
[24] Chu, L.; Tang, B.; Fwa, T. F. (2018). Evaluation of functional characteristics of laboratory mix design of porous pavement materials, Construction and Building Materials, Vol. 191, 281–289. doi:10.1016/j.conbuildmat.2018.10.003
[25] Fwa, T. F.; Lim, E.; Tan, K. H. (2015). Comparison of permeability and clogging characteristics of porous asphalt and pervious concrete pavement materials, Transportation Research Record, Vol. 2511, No. 2511, 72–80. doi:10.3141/2511-09
[26] Garcia, A.; Aboufoul, M.; Asamoah, F.; Jing, D. (2019). Study the influence of the air void topology on porous asphalt clogging, Construction and Building Materials, Vol. 227, 116791. doi:10.1016/j.conbuildmat.2019.116791
[27] Frigio, F.; Pasquini, E.; Ferrotti, G.; Canestrari, F. (2013). Improved durability of recycled porous asphalt, Construction and Building Materials, Vol. 48, 755–763. doi:10.1016/j.conbuildmat.2013.07.044
[28] Khosla, N.; Birdsall, B. G.; Kawaguchi, S. (2000). Evaluation of Moisture Susceptibility of Asphalt Mixtures: Conventional and New Methods, Transportation Research Record: Journal of the Transportation Research Board, Vol. 1728, No. 1, 43–51. doi:10.3141/1728-07
[29] Watson, D. E.; Cooley, L. A.; Moore, K. A.; Williams, K. (2004). Laboratory performance testing of open-graded friction course mixtures, Transportation Research Record, No. 1891, 40–47. doi:10.3141/1891-06
[30] Gupta, A.; Castro-Fresno, D.; Lastra-Gonzalez, P.; Rodriguez-Hernandez, J. (2021). Selection of fibers to improve porous asphalt mixtures using multi-criteria analysis, Construction and Building Materials, Vol. 266, 121198. doi:10.1016/j.conbuildmat.2020.121198
[31] Cetin, A. (2013). Effects of crumb rubber size and concentration on the performance of porous asphalt mixtures, International Journal of Polymer Science, Vol. 2013. doi:10.1155/2013/789612
[32] Shirini, B.; Imaninasab, R. (2016). Performance evaluation of rubberized and SBS modified porous asphalt mixtures, Construction and Building Materials, Vol. 107, 165–171. doi:10.1016/j.conbuildmat.2016.01.006
[33] Wang, S.; Kang, A.; Xiao, P.; Li, B.; Fu, W. (2019). Investigating the effects of chopped basalt fiber on the performance of porous asphalt mixture, Advances in Materials Science and Engineering, Vol. 2019. doi:10.1155/2019/2323761
[34] Alber, S.; Ressel, W.; Liu, P.; Wang, D.; Oeser, M. (2018). Influence of soiling phenomena on air-void microstructure and acoustic performance of porous asphalt pavement, Construction and Building Materials, Vol. 158, 938–948. doi:10.1016/j.conbuildmat.2017.10.069
[35] Zhao, Y.; Huang, X. (2010). Design method and performance for large stone porous asphalt mixtures, Journal Wuhan University of Technology, Materials Science Edition, Vol. 25, No. 5, 871–876. doi:10.1007/s11595-010-0111-2
[36] Dietz, M. E. (2007). Low impact development practices: A review of current research and recommendations for future directions, Water, Air, and Soil Pollution, Vol. 186, Nos. 1–4, 351–363. doi:10.1007/s11270-007-9484-z
[37] Watson, D. E.; Moore, K. A.; Williams, K.; Cooley, L. A. (2003). Refinement of New-Generation Open-Graded Friction Course Mix Design, Transportation Research Record, No. 1832, 78–85. doi:10.3141/1832-10
[38] Chiranjeevi, G.; Shankar, S. (2022). Evaluation of different porous asphalt gradations based on aggregate packing and stiffness parameters, Innovative Infrastructure Solutions, No. November. doi:10.1007/s41062-022-00969-8 | ||
آمار تعداد مشاهده مقاله: 165 تعداد دریافت فایل اصل مقاله: 47 |