
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,968 |
تعداد دریافت فایل اصل مقاله | 7,656,405 |
On the study of nonlinear sequential fractional integro-differential equation with nonseparated boundary conditions | ||
International Journal of Nonlinear Analysis and Applications | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 28 دی 1403 اصل مقاله (378.49 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.25586.3062 | ||
نویسندگان | ||
Mariam El Hassnaoui1؛ Hssaine Oummi* 2 | ||
1Laboratory of Applied Mathematics and Scientific Calculus, Sultan Moulay Sliman University, Morocco | ||
2Department of Applied Mathematics, Faculty of Applied Sciences Ait Melloul. University Ibn Zohr, Morocco | ||
تاریخ دریافت: 23 مهر 1400، تاریخ پذیرش: 24 آذر 1400 | ||
چکیده | ||
The aim of this paper is to study the existing results of nonlinear sequential fractional integro-differential equations with nonseparated boundary conditions. In this work, we consider a nonlinear problem and general boundary conditions. This extension introduces mathematical difficulties which we will overcome by using fixed-point techniques. For this, we rewrite the nonlinear boundary problem as a fixed point one involving two operators. Then, we show that these operators satisfy the conditions of the Krasnoselskii theorem. An example is given to illustrate our result. | ||
کلیدواژهها | ||
Fractional differential equation؛ Krasnoselskii fixed point theorem؛ nonseparated boundary conditions | ||
مراجع | ||
[1] S. Abbas, M. Benchohra, and G.M. N’Guerekata, Topics in Fractional Differential Equations, vol. 27. Springer, New York, 2012. [2] G. Anastassiou, Advances on Fractional Inequalities, Springer, New York, 2011. [3] A. Arikoglu and I. Ozkol, Solution of fractional integro-differential equations by using fractional differential trans[1]form method, Chaos Solitons Fractals 40 (2009), 521–529. [4] D. Baleanu, Z. Guven¸c, and J. Machado, New Trends in Nanotechnology and Fractional Calculus Applications, Springer, New York, 2000. [5] D. Baleanu, S. Etemad, and S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl. 2020 (2020), 64. [6] D. Baleanu, A. Jajarmi, H. Mohammadi, and S. Rezapour, A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative, Chaos Solitons Fractals 134 (2020), 109705. [7] D. Baleanu, S. Zahra Nazemi, and S. Rezapour, Existence and uniqueness of solutions for multi-term nonlinear fractional integro-differential equations, Adv. Differ. Equ. 368 (2013). [8] H. Brezis, Functional Analysis. Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. [9] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci. 54 (2003), 3413–3442. [10] K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer, New York, 2010. [11] R.A.C. Ferreira, Lyapunov-type inequalities for some sequential fractional boundary value problems, Adv. Dyn. Syst. Appl. 11 (2016), no. 1, 33–43. [12] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. [13] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Boston, 2006. [14] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, 204th ed. Elsevier, Amsterdam, 2006. [15] V. Lakshmikantham, S. Leela, and D.J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009. [16] Y. Luchko and R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math. Viet. 24 (1999), no. 2, 207–233. [17] M. Mohan Raja, V. Vijaykumar, and R. Udhaykumar, Results on the existence and controllability of fractional integro-differential system of order 1 < r < 2 via measure of noncompactness, Chaos Solitons Fractals 139 (2020), 1–13. [18] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999. [19] C. Ravichandran, K. Logeswari, and F. Jarad, New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations, Chaos Solitons Fractals 125 (2019), 194–200. [20] S. Samko, A. Kilbas, and O. Marichev, Fractional Integrals and Derivatives, Gordon and Breach, Yverdon, 1993. [21] D.R. Smart, Fixed Point Theorems, Cambridge University Press, Cambridge, 1980. [22] V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Higher Education Press, Heidelberg, 2010. [23] S. Xinwei and L. Landong, Existence of solution for boundary value problem of nonlinear fractional differential equation, Appl. Math. J. Chin. Univ. Ser. B 22 (2007), no. 3, 291–298. [24] E. Zeidler, Nonlinear Functional Analysis and its Applications I: Fixed-Point Theorems, Springer-Verlag, New York, 1993. [25] X. Su and S. Zhang, Solutions to boundary value problems for nonlinear differential equations of fractional order, Electron. J. Differ. Equ. 26 (2009) | ||
آمار تعداد مشاهده مقاله: 27 تعداد دریافت فایل اصل مقاله: 44 |