
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,742 |
تعداد دریافت فایل اصل مقاله | 7,656,161 |
A classification of total irregularity of polyomino chains based on segments by using non-decreasing real function | ||
International Journal of Nonlinear Analysis and Applications | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 03 اسفند 1403 اصل مقاله (439.66 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.29433.4164 | ||
نویسنده | ||
Zahra Yarahmadi* | ||
Department of Mathematics, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran | ||
تاریخ دریافت: 06 دی 1401، تاریخ پذیرش: 07 بهمن 1401 | ||
چکیده | ||
The total irregularity is a type of graph invariant and for a given simple graph $ G$ is calculated by the formula, $irr_t(G)=\dfrac{1}{2}\sum_{\{u,v\} \subseteq V(G)}\mid deg_Gu-deg_Gv\mid$, in which $deg_Gv$ is the degree of the vertex $v$ of $G$. This paper aims to offer a classification of polyomino chains based on segments in terms of total irregularity. We can find a sequence for all polyomino chains concerning this graph invariant by defining a non-decreasing function. | ||
کلیدواژهها | ||
Total irregularity؛ polyomino chain؛ irregularity | ||
مراجع | ||
[1] H. Abdo, S. Brandt, and D. Dimitrov, The total irregularity of a graph, Discrete Math. Theor. Comput. Sci. 16 (2014), no. 1, 201–206. [2] A. Ali, A.A. Bhatti, and Z. Raza, Some vertex-degree-based topological indices of polyomino chains, J. Comput. Theor. Nanosci. 12 (2015), no. 9, 2101–2107. [3] A.R. Ashrafi and A. Ghalavand, Note on non-regular graphs with minimal total irregularity, Appl. Math. Comput. 369 (2020), 124891. [4] M. Albertson, The irregularity of a graph, Ars Comb. 46 (1997), 219–225. [5] D. Dimitrov and R. Skrekovski, Comparing the irregularity and the total irregularity of graphs, Ars Math. Contemp. 9 (2015), 45–50. [6] A. Ghalavand and A.R. Ashrafi, Ordering of c-cyclic graphs with respect to total irregularity, J. Appl. Math. Comput. 63 (2020), 707–715. [7] I. Gutman and K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004), 83–92. [8] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals, Total π−electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535–538. [9] D.A. Klarner, Polyominoes, J. E. Goodman and J. O’Rourke (Eds.), Handbook of Discrete and Computational Geometry, CRC Press LLC, Boca Raton, Florida, 1997 [10] S. Nikolic, G. Kovacevic, A. Milicevic, and N. Trinajstic, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003), 113–124. [11] L. Xu and S. Chen, The PI index of polyomino chains, Appl. Math. Lett. 21 (2008), 1101–1104. [12] J. Yang, F. Xia and S. Chen, On the Randi´c index of polyomino chains, Appl. Math. Sci. 5 (2011), no. 5, 255–260. [13] J. Yang, F. Xia, and S. Chen, On sum-connectivity index of polyomino chains, Appl. Math. Sci. 5 (2011), no. 6, 267–271. [14] Z. Yarahmadi, Finding extremal total irregularity of polyomino chain by transformation method, J. New Res. Math. 7 (2021), 141–149. [15] Z. Yarahmadi, A.R. Ashrafi, and S. Moradi, Extremal polyomino chains with respect to Zagreb indices, Appl. Math. Lett. 25 (2012), 166–171. [16] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52 (2004), 113–118. [17] B. Zhou and I. Gutman, Relations between Wiener, hyper-Wiener and Zagreb indices, Chem. Phys. Lett. 394 (2004), 93–95. [18] B. Zhou and I. Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem. 54 (2005), 233–239. [19] Y. Zhu, L. You, and J. Yang, The minimal total irregularity of some classes of graphs, Filomat 30 (2016), 1203–1211. | ||
آمار تعداد مشاهده مقاله: 7 تعداد دریافت فایل اصل مقاله: 2 |