
تعداد نشریات | 21 |
تعداد شمارهها | 641 |
تعداد مقالات | 9,362 |
تعداد مشاهده مقاله | 68,021,767 |
تعداد دریافت فایل اصل مقاله | 28,792,886 |
Utilization of Construction and Demolition Waste for Sustainable Masonry: Experimental Analysis and Microstructural Insights | ||
Journal of Rehabilitation in Civil Engineering | ||
مقاله 20، دوره 14، شماره 1 - شماره پیاپی 41، اردیبهشت 2026 اصل مقاله (2.93 M) | ||
نوع مقاله: Regular Paper | ||
شناسه دیجیتال (DOI): 10.22075/jrce.2025.36210.2229 | ||
نویسندگان | ||
K Monish Kumar1؛ H P Thanu* 2؛ M C Nataraja3 | ||
1Ph.D. Research Scholar, Department of Civil Engineering, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru-570006, India | ||
2Assistant Professor, Department of Construction Technology and Management, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru-570006, India | ||
3Professor, Department of Civil Engineering, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru-570006, India | ||
تاریخ دریافت: 24 آذر 1403، تاریخ بازنگری: 17 دی 1403، تاریخ پذیرش: 19 اسفند 1403 | ||
چکیده | ||
Construction is an ever-growing industry that significantly contributes to the global economy and provides infrastructure for many diversified sectors such as housing, transportation, water supply, irrigation, and many other projects. The construction of these projects leads to increased demand for conventional materials in the form of bricks, cement, steel, aggregates, and so on, which has adversely impacted the environment. It has become inevitable for construction professionals to look for energy-efficient sustainable alternatives for conventional building materials. In the present experimental work, the authors have used construction waste as a sustainable alternative by replacing conventional materials partially or completely in masonry units. Construction wastes collected from nearby dump yards are segregated and processed to get the recycled aggregates which are later tested for quality. These aggregates and binders are proportioned to cast stabilized blocks having different engineering properties. These blocks when tested in compression at 7, 14 and 28 days, have resulted in strengths in the range of 2.82 MPa to 6.82 MPa. The blocks exhibiting higher strengths were further tested for physical, mechanical, and durability properties namely dimension, density, water absorption, scratch, and efflorescence. In addition, these blocks and the basic materials are tested for their microanalysis through SEM, XRD, and FTIR. Finally, prisms are cast and tested as a masonry unit at 7, 14, and 28 days. These blocks showed a maximum dry compressive strength of 4.1 MPa. From the study, it is observed that the stabilized recycled aggregate with 10% cement binder has resulted in acceptable alternative blocks having good engineering properties. The same is presented in the graphical abstract as well. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Stabilized recycled aggregate blocks؛ Mechanical strengths؛ Prism test؛ Durability studies؛ Microstructural analysis | ||
مراجع | ||
[1] A. L. Murmu and A. Patel, “Towards sustainable bricks production: An overview,” Constr. Build. Mater., vol. 165, pp. 112–125, Aug. 2018, doi: 10.1016/j.conbuildmat.2018.01.038.
[2] L. M. T. Kumari, U. Kulatunga, N. Madusanka, and N. Jayasena, “Embodied Carbon Reduction Strategies for Buildings,” in ICSBE 2018, vol. 44, R. Dissanayake and P. Mendis, Eds., Singapore: Springer Singapore, 2020, pp. 295–308. [Online]. Available: http://link.springer.com/10.1007/978-981-13-9749-3_28
[3] S. Jeyasegaram and N. Sathiparan, “Influence of Soil Grading on the Mechanical Behavior of Earth Cement Blocks,” MRS Adv., vol. 5, no. 54–55, pp. 2771–2782, Aug. 2020, doi: 10.1557/adv.2020.317.
[4] S. S. K., T. T.P., and S. K. M.V.N., “Implementing construction waste management in India: An extended theory of planned behaviour approach,” Environ. Technol. Innov., vol. 27, p. 102401, Aug. 2022, doi: 10.1016/j.eti.2022.102401.
[5] J. Josiah Marut, J. O. Alaezi, and I. C. Obeka, “A Review of Alternative Building Materials for Sustainable Construction Towards Sustainable Development,” J. Mod. Mater., vol. 7, no. 1, pp. 68–78, Aug. 2020, doi: 10.21467/jmm.7.1.68-78.
[6] H. B. Nagaraj, A. Rajesh, and M. V Sravan, “Influence of soil gradation, proportion and combination of admixtures on the properties and durability of CSEBs,” Constr. Build. Mater., vol. 110, pp. 135–144, Jun. 2016, doi: 10.1016/j.conbuildmat.2016.02.023.
[7] K. S. Jagadish, B. V. V Reddy, and K. S. N. Rao, Alternative Building Materials and Technologies. New Age International Limited. [Online]. Available: https://books.google.co.in/books?id=k0TNzgEACAAJ
[8] C. R. Meesala, N. K. Verma, and S. Kumar, “Critical review on fly‐ash based geopolymer concrete,” Struct. Concr., vol. 21, no. 3, pp. 1013–1028, Oct. 2020, doi: 10.1002/suco.201900326.
[9] B. Wang, L. Yan, Q. Fu, and B. Kasal, “A Comprehensive Review on Recycled Aggregate and Recycled Aggregate Concrete,” Resour. Conserv. Recycl., vol. 171, p. 105565, Oct. 2021, doi: 10.1016/j.resconrec.2021.105565.
[10] J. K. Prusty, S. K. Patro, and S. S. Basarkar, “Concrete using agro-waste as fine aggregate for sustainable built environment – A review,” Int. J. Sustain. Built Environ., vol. 5, no. 2, pp. 312–333, Oct. 2016, doi: 10.1016/j.ijsbe.2016.06.003.
[11] P. Kasinikota and D. D. Tripura, “Evaluation of compressed stabilized earth block properties using crushed brick waste,” Constr. Build. Mater., vol. 280, p. 122520, Oct. 2021, doi: 10.1016/j.conbuildmat.2021.122520.
[12] N. Jannat, A. Hussien, B. Abdullah, and A. Cotgrave, “Application of agro and non-agro waste materials for unfired earth blocks construction: A review,” Constr. Build. Mater., vol. 254, p. 119346, Aug. 2020, doi: 10.1016/j.conbuildmat.2020.119346.
[13] M. Contreras et al., “Recycling of construction and demolition waste for producing new construction material (Brazil case-study),” Constr. Build. Mater., vol. 123, pp. 594–600, Aug. 2016, doi: 10.1016/j.conbuildmat.2016.07.044.
[14] M. M. Sabai, M. G. D. M. Cox, R. R. Mato, E. L. C. Egmond, and J. J. N. Lichtenberg, “Concrete block production from construction and demolition waste in Tanzania,” Resour. Conserv. Recycl., vol. 72, pp. 9–19, Aug. 2013, doi: 10.1016/j.resconrec.2012.12.003.
[15] S. N. Malkanthi, W. G. S. Wickramasinghe, and A. A. D. A. J. Perera, “Use of construction waste to modify soil grading for compressed stabilized earth blocks (CSEB) production,” Case Stud. Constr. Mater., vol. 15, p. e00717, Oct. 2021, doi: 10.1016/j.cscm.2021.e00717.
[16] A. M. Joshi, S. M. Basutkar, M. I. Ahmed, M. Keshava, R. Seshagiri Rao, and S. J. Kaup, “Performance of stabilized adobe blocks prepared using construction and demolition waste,” J. Build. Pathol. Rehabil., vol. 4, no. 1, p. 13, Aug. 2019, doi: 10.1007/s41024-019-0052-x.
[17] N. Kongkajun, E. A. Laitila, P. Ineure, W. Prakaypan, B. Cherdhirunkorn, and P. Chakartnarodom, “Soil-cement bricks produced from local clay brick waste and soft sludge from fiber cement production,” Case Stud. Constr. Mater., vol. 13, p. e00448, Aug. 2020, doi: 10.1016/j.cscm.2020.e00448.
[18] S. N. Malkanthi, N. Balthazaar, and A. A. D. A. J. Perera, “Lime stabilization for compressed stabilized earth blocks with reduced clay and silt,” Case Stud. Constr. Mater., vol. 12, p. e00326, Aug. 2020, doi: 10.1016/j.cscm.2019.e00326.
[19] H. B. Nagaraj and C. Shreyasvi, “Compressed Stabilized Earth Blocks Using Iron Mine Spoil Waste - An Explorative Study,” Procedia Eng., vol. 180, pp. 1203–1212, Aug. 2017, doi: 10.1016/j.proeng.2017.04.281.
[20] B. V Venkatarama Reddy, R. Lal, and K. S. Nanjunda Rao, “Enhancing Bond Strength and Characteristics of Soil-Cement Block Masonry,” J. Mater. Civ. Eng., vol. 19, no. 2, pp. 164–172, Aug. 2007, doi: 10.1061/(ASCE)0899-1561(2007)19:2(164).
[21] G. Sarangapani, B. V Venkatarama Reddy, and K. S. Jagadish, “Brick-Mortar Bond and Masonry Compressive Strength,” J. Mater. Civ. Eng., vol. 17, no. 2, pp. 229–237, Aug. 2005, doi: 10.1061/(ASCE)0899-1561(2005)17:2(229).
[22] S. M. Kamplimath and A. M. Joshi, “Alternatives to Conventional Cement-Sand Mortar for Sustainable Masonry Construction,” SSRN Electron. J., Aug. 2015, doi: 10.2139/ssrn.3350341.
[23] “IS 383 (1970): Specification for Coarse and Fine Aggregates From Natural Sources For Concrete”, [Online]. Available: http://files/298/IS 383 (1970) Specification for Coarse and Fine A.pdf
[24] “IS 2720-8 (1983)”, [Online]. Available: http://files/208/IS 2720-8 (1983) Methods of test for soils, Part .pdf
[25] IS 712:1984, “Specification for Building Limes (CED 4: Building Limes and Gypsum products) (reaffirmed 2009),” 2009.
[26] IS: 269, “Ordinary Portland Cement - Specification (Sixth Revision),” Bur. Indian Stand., 2015.
[27] “IS 1725 (1982): soil based blocks used in general building construction”, [Online]. Available: http://files/228/IS 1725 (1982) soil based blocks used in general .pdf
[28] B. V Venkatarama Reddy and M. S. Latha, “Influence of soil grading on the characteristics of cement stabilised soil compacts,” Mater. Struct., vol. 47, no. 10, pp. 1633–1645, Jun. 2014, doi: 10.1617/s11527-013-0142-1.
[29] P. Walker and T. Stace, “Properties of some cement stabilised compressed earth blocks and mortars,” Mater. Struct., vol. 30, no. 9, pp. 545–551, Jun. 1997, doi: 10.1007/BF02486398.
[30] C. R. Kumar, R. S. Gadekari, G. Vani, and K. M. Mini, “Stabilization of black cotton soil and loam soil using reclaimed asphalt pavement and waste crushed glass,” Mater. Today Proc., vol. 24, pp. 379–387, Sep. 2020, doi: 10.1016/j.matpr.2020.04.289.
[31] B. V Venkatarama Reddy and A. Gupta, “Tensile Bond Strength of Soil-Cement Block Masonry Couplets Using Cement-Soil Mortars,” J. Mater. Civ. Eng., vol. 18, no. 1, pp. 36–45, Aug. 2006, doi: 10.1061/(ASCE)0899-1561(2006)18:1(36).
[32] A. M. Joshi, S. M. Basutkar, M. I. Ahmed, M. Keshava, R. Seshagiri Rao, and S. J. Kaup, “Performance of stabilized adobe blocks prepared using construction and demolition waste,” J. Build. Pathol. Rehabil., vol. 4, no. 1, p. 13, Jun. 2019, doi: 10.1007/s41024-019-0052-x.
[33] J. Rivera, J. Coelho, R. Silva, T. Miranda, F. Castro, and N. Cristelo, “Compressed earth blocks stabilized with glass waste and fly ash activated with a recycled alkaline cleaning solution,” J. Clean. Prod., vol. 284, p. 124783, Aug. 2021, doi: 10.1016/j.jclepro.2020.124783.
[34] V. Venkataramu and B. V Venkatarama Reddy, “Characteristics of Mortars and Masonry Using Granulated Blast Furnace Slag as Fine Aggregate,” J. Mater. Civ. Eng., vol. 34, no. 5, p. 4022060, Jun. 2022, doi: 10.1061/(ASCE)MT.1943-5533.0004204.
[35] A. G. Tennant, C. D. Foster, and B. V. V. Reddy, “Detailed Experimental Review of Flexural Behavior of Cement Stabilized Soil Block Masonry,” J. Mater. Civ. Eng., vol. 28, no. 6, p. 6016004, Aug. 2016, doi: 10.1061/(ASCE)MT.1943-5533.0001548.
[36] H. B. Nagaraj, M. V Sravan, T. G. Arun, and K. S. Jagadish, “Role of lime with cement in long-term strength of Compressed Stabilized Earth Blocks,” Int. J. Sustain. Built Environ., vol. 3, no. 1, pp. 54–61, Aug. 2014, doi: 10.1016/j.ijsbe.2014.03.001.
[37] B. V Venkatarama Reddy, R. Lal, and K. S. Nanjunda Rao, “Optimum Soil Grading for the Soil-Cement Blocks,” J. Mater. Civ. Eng., vol. 19, no. 2, pp. 139–148, Aug. 2007, doi: 10.1061/(ASCE)0899-1561(2007)19:2(139).
[38] “IS 3495-1 to 4 (1992)”, [Online]. Available: http://files/210/IS 3495-1 to 4 (1992) Methods of tests of burnt c.pdf
[39] N. Soundarya, “Effect of fly ash and GGBS on lime stabilized mud block,” Mater. Today Proc., vol. 47, pp. 4636–4640, Aug. 2021, doi: 10.1016/j.matpr.2021.05.481.
[40] “IS 5454 (1978)”, [Online]. Available: http://files/237/IS 5454 (1978) Methods of sampling of clay buildi.pdf
[41] Indian Standard., “Stabilized soil blocks used in general building construction-Specification,” IS 1725, New Delhi, India, 2023.
[42] J. A. Bogas, M. Silva, and M. Glória Gomes, “Unstabilized and stabilized compressed earth blocks with partial incorporation of recycled aggregates,” Int. J. Archit. Herit., vol. 13, no. 4, pp. 569–584, Oct. 2019, doi: 10.1080/15583058.2018.1442891.
[43] S. N. Malkanthi, W. G. S. Wickramasinghe, and A. A. D. A. J. Perera, “Use of construction waste to modify soil grading for compressed stabilized earth blocks (CSEB) production,” Case Stud. Constr. Mater., vol. 15, p. e00717, Aug. 2021, doi: 10.1016/j.cscm.2021.e00717.
[44] H. N. Abhilash, P. Walker, B. V Venkatarama Reddy, A. Heath, and D. Maskell, “Compressive Strength of Novel Alkali-Activated Stabilized Earth Materials Incorporating Solid Wastes,” J. Mater. Civ. Eng., vol. 32, no. 6, p. 4020118, Oct. 2020, doi: 10.1061/(ASCE)MT.1943-5533.0003188.
[45] “IS 2386-6 (1963)”, [Online]. Available: http://files/247/IS 2386-6 (1963) Methods of test for aggregates f.pdf
[46] “IS 2250 (1981): Code of Practice for Preparation and Use of Masonry Mortars”, [Online]. Available: http://files/230/IS 2250 (1981) Code of Practice for Preparation a.pdf
[47] M. R. Sudhir, M. Beulah, P. Sasha Rai, and G. Gayathri, “A microstructure exploration and compressive strength determination of red mud bricks prepared using industrial wastes,” Mater. Today Proc., vol. 46, pp. 163–169, Aug. 2021, doi: 10.1016/j.matpr.2020.07.171.
[48] H. S. Joseph, T. Pachiappan, S. Avudaiappan, and E. I. S. Flores, “A Study on Mechanical and Microstructural Characteristics of Concrete Using Recycled Aggregate,” Materials (Basel)., vol. 15, no. 21, 2022, doi: 10.3390/ma15217535.
[49] G. S. Dos Reis et al., “Fabrication, microstructure, and properties of fired clay bricks using construction and demolition waste sludge as the main additive,” J. Clean. Prod., vol. 258, p. 120733, Sep. 2020, doi: 10.1016/j.jclepro.2020.120733.
[50] H. Javdanian, “Experimental Study on Lime - Stabilization of Isfahan Landfill,” vol. 1, pp. 1–11, 2025.
[51] T. Yaowarat, S. Horpibulsuk, A. Arulrajah, M. Mirzababaei, and A. S. A Rashid, “Compressive and Flexural Strength of Polyvinyl Alcohol–Modified Pavement Concrete Using Recycled Concrete Aggregates,” J. Mater. Civ. Eng., vol. 30, no. 4, pp. 1–8, 2018, doi: 10.1061/(asce)mt.1943-5533.0002233.
[52] D. C. Lingegowda, J. K. Kumar, A. G. D. Prasad, M. Zarei, and S. Gopal, “FTIR Spectroscopic Studies On Cleome Gynandra – Comparative Analysis Of Functional Group Before And After Extraction”, [Online]. Available: http://files/261/Lingegowda et al. - FTIR Spectroscopic Studies On Cleome Gynandra – Co.pdf
[53] D. D. Prasad and K. Ravande, “Fourier Transformed –Infrared Spectroscopy (FTIR) Studies On The Concrete/Cement Mortar Mass Made Of Cent Percentage Recycled Coarse And Fine Aggregates”, [Online]. Available: http://files/263/Prasad and Ravande - Fourier Transformed –Infrared Spectroscopy (FTIR) .pdf
[54] B. Medvey and G. Dobszay, “Durability of Stabilized Earthen Constructions: A Review,” Geotech. Geol. Eng., vol. 38, no. 3, pp. 2403–2425, Aug. 2020, doi: 10.1007/s10706-020-01208-6.
[55] F. R. Arooz and R. U. Halwatura, “Mud-concrete block (MCB): mix design & durability characteristics,” Case Stud. Constr. Mater., vol. 8, pp. 39–50, Jul. 2018, doi: 10.1016/j.cscm.2017.12.004.
[56] J. R. González-López, C. A. Juárez-Alvarado, B. Ayub-Francis, and J. M. Mendoza-Rangel, “Compaction effect on the compressive strength and durability of stabilized earth blocks,” Constr. Build. Mater., vol. 163, pp. 179–188, Aug. 2018, doi: 10.1016/j.conbuildmat.2017.12.074.
[57] M. Roknuzzaman and M. M. Rahman, “Compressive strength of recycled green concrete affected by chloride and sulfate exposures,” J. Rehabil. Civ. Eng., vol. 12, no. 4, pp. 55–65, 2024, doi: 10.22075/jrce.2024.32378.1938.
[58] A. Thennarasan Latha, B. Murugesan, and B. S. Thomas, “Compressed Stabilized Earth Block Incorporating Municipal Solid Waste Incinerator Bottom Ash as a Partial Replacement for Fine Aggregates,” Buildings, vol. 13, no. 5, p. 1114, Aug. 2023, doi: 10.3390/buildings13051114.
[59] N. P. Vignesh, K. Mahendran, and N. Arunachelam, “Effects of Industrial and Agricultural Wastes on Mud Blocks Using Geopolymer,” Adv. Civ. Eng., vol. 2020, pp. 1–9, Aug. 2020, doi: 10.1155/2020/1054176.
[60] K. Venu Madhava Rao, B. V Venkatarama Reddy, and K. S. Jagadish, “Flexural bond strength of masonry using various blocks and mortars,” Mater. Struct., vol. 29, no. 2, pp. 119–124, Aug. 1996, doi: 10.1007/BF02486202.
[61] K. Sajanthan, B. Balagasan, and N. Sathiparan, “Prediction of Compressive Strength of Stabilized Earth Block Masonry,” Adv. Civ. Eng., vol. 2019, pp. 1–13, Aug. 2019, doi: 10.1155/2019/2072430.
[62] M. S. Amalkar, M. Ali, and K. S. Jagadish, “Strength of stabilized mud block masonry,” J. Build. Pathol. Rehabil., vol. 6, no. 1, p. 8, Aug. 2021, doi: 10.1007/s41024-020-00101-2. | ||
آمار تعداد مشاهده مقاله: 398 تعداد دریافت فایل اصل مقاله: 41 |