
تعداد نشریات | 21 |
تعداد شمارهها | 640 |
تعداد مقالات | 9,352 |
تعداد مشاهده مقاله | 67,997,403 |
تعداد دریافت فایل اصل مقاله | 27,154,992 |
طراحی و پیادهسازی اینورتر 13 سطحی کلیدزنی خازنی بهبودیافته با تعداد ادوات کمتر | ||
مدل سازی در مهندسی | ||
دوره 23، شماره ویژه 81، تیر 1404، صفحه 285-301 اصل مقاله (2.06 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/jme.2024.32510.2573 | ||
نویسندگان | ||
معصومه درخشنده1؛ مجید حسین پور* 1؛ مهدی شاهپرستی2 | ||
1گروه مهندسی برق، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
2دانشکده فناوری و نوآوری، دانشگاه واسا، واسا، فنلاند | ||
تاریخ دریافت: 10 آذر 1402، تاریخ بازنگری: 22 شهریور 1403، تاریخ پذیرش: 11 آذر 1403 | ||
چکیده | ||
در این مقاله یک اینورتر 13 سطحی کلیدزنی خازنی با بهره ولتاژ 3 پیشنهاد شده است. ساختار پیشنهادی، خروجی 13 سطحی را تنها با استفاده از یک منبع dc، 11 سوئیچ و 3 خازن تولید میکند. خازنهای ساختار پیشنهادی بدون استفاده از مدارات اضافی یا روش کنترلی پیچیده دارای قابلیت تعادل خودکار ولتاژ میباشند. همچنین جریان هجومی خازنها با استفاده از یک روش شارژ نرم کاهش یافته است. ساختار پیشنهادی با ساختارهای متفاوت 13 سطحی ارائه شده در تحقیقات اخیر از حیث پارامترهای مختلف مانند تعداد ادوات نیمهرسانا، تعداد منابع dc، بهره ولتاژ، حداکثر ولتاژ مسدودکنندگی (MBV) و ولتاژ مسدودکنندگی کل (TSV) مقایسه شده است. با بررسی نتایج این مقایسه قابل بیان است که ساختار پیشنهادی نسبت به دیگر ساختارها به طرز قابل توجهی از تعداد ادوات نیمه رسانای کمتر با TSV و بهره ولتاژ مناسب بهره میبرد. از مزایای دیگر ساختار پیشنهادی نیز میتوان به عدم استفاده از دیود و همچنین مقرون به صرفه بودن آن اشاره کرد. علاوه بر این تلفات توان ساختار پیشنهادی ارزیابی شده و راندمان آن برای توانهای خروجی مختلف محاسبه شده است. در نهایت، کارایی ساختار پیشنهادی توسط شبیهسازی و پیادهسازی آزمایشگاهی آن تحت شرایط پایدار و همچنین شرایط دینامیکی مختلف تایید شده است. | ||
کلیدواژهها | ||
اینورتر چندسطحی؛ کلیدزنی خازنی؛ تعادل خودکار ولتاژ؛ تنش ولتاژ ادوات | ||
عنوان مقاله [English] | ||
Design and Implementation of an Improved Thirteen Level Switched Capacitor Inverter with Less Components | ||
نویسندگان [English] | ||
Masumeh Derakhshandeh1؛ Majid Hosseinpour1؛ Mahdi Shahparasti2 | ||
1Department of Electrical Engineering, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, Iran | ||
2School of Technology and Innovations, University of Vaasa, 65200 Vaasa, Finland | ||
چکیده [English] | ||
In this paper, a 13-level switched-capacitor inverter with a voltage gain of 3 is proposed. The proposed structure generates a 13-level output using only one DC source, 11 switches, and 3 capacitors. The capacitors in the proposed structure, without the use of additional circuits or complex control methods, have the capability of self-balancing voltage. Additionally, the inrush current of the capacitors has been reduced using a soft charging method. The proposed structure has been compared with different 13-level structures presented in recent studies in terms of various parameters such as the number of semiconductor devices, the number of DC sources, voltage gain, Maximum Blocking Voltage (MBV), and Total Switching Voltage (TSV). Another advantage of the proposed structure is the non-use of a diode and its cost-effectiveness. In addition, the power losses of the proposed structure have been evaluated, and its efficiency has been calculated for various output powers. Finally, the performance of the proposed structure has been verified through simulation and laboratory implementation under both stable and various dynamic conditions. | ||
کلیدواژهها [English] | ||
Multilevel inverter, Switched-capacitor, Self-balancing voltage, Voltage stress of devices | ||
مراجع | ||
[1] M. Sarebanzadeh, M.A. Hosseinzadeh, C. Garcia, E. Babaei, S. Islam, and J. Rodriguez. "Reduced switch multilevel inverter topologies for renewable energy sources." IEEE Access 9 (2021): 120580-120595. [2] M.A. Hosseinzadeh, M. Sarebanzadeh, M. Rivera, E. Babaei, and P. Wheeler. "A reduced single-phase switched-diode cascaded multilevel inverter." IEEE Journal of Emerging and Selected Topics in Power Electronics 9, no. 3 (2020): 3556-3569. [3] R. Barzegarkhoo, M. Moradzadeh, E. Zamiri, H. Madadi Kojabadi, and F. Blaabjerg. "A new boost switched-capacitor multilevel converter with reduced circuit devices." IEEE Transactions on Power Electronics 33, no. 8 (2017): 6738-6754. [4] N. Sandeep, and U.R. Yaragatti. "A switched-capacitor-based multilevel inverter topology with reduced components." IEEE Transactions on Power Electronics 33, no. 7 (2017): 5538-5542. [5] P.R. Bana, K.P. Panda, R.T. Naayagi, P. Siano, and G. Panda. "Recently developed reduced switch multilevel inverter for renewable energy integration and drives application: topologies, comprehensive analysis and comparative evaluation." IEEE Access 7 (2019): 54888-54909. [6] M. Karimi, P. Kargar, and K. Varesi. "An extendable asymmetric boost multi‐level inverter with self‐balanced capacitors." International Journal of Circuit Theory and Applications 50, no. 4 (2022): 1297-1316. [7] M.D. Siddique, S. Mekhilef, N. Mohamed Shah, N. Sandeep, J.S. Mohamed Ali, A. Iqbal, M. Ahmed et al. "A single DC source nine-level switched-capacitor boost inverter topology with reduced switch count." IEEE Access 8 (2019): 5840-5851. [8] M.J. Sathik, K. Bhatnagar, N. Sandeep, and F. Blaabjerg. "An improved seven-level PUC inverter topology with voltage boosting." IEEE Transactions on Circuits and Systems II: Express Briefs 67, no. 1 (2019): 127-131. [9] M.J. Sathik, N. Sandeep, D. Almakhles, and F. Blaabjerg. "Cross connected compact switched-capacitor multilevel inverter (C 3-SCMLI) topology with reduced switch count." IEEE Transactions on Circuits and Systems II: Express Briefs 67, no. 12 (2020): 3287-3291. [10] R. Barzegarkhoo, M. Forouzesh, S.S. Lee, F. Blaabjerg, and Y.P. Siwakoti. "Switched-capacitor multilevel inverters: A comprehensive review." IEEE Transactions on Power Electronics 37, no. 9 (2022): 11209-11243. [11] H. Khoun-Jahan, A. Mohammadpour Shotorbani, M. Abapour, K. Zare, S.H. Hosseini, F. Blaabjerg, and Y. Yang. "Switched capacitor based cascaded half-bridge multilevel inverter with voltage boosting feature." CPSS Transactions on Power Electronics and Applications 6, no. 1 (2021): 63-73. [12] K.P. Panda, P.R. Bana, and G. Panda. "A reduced device count single DC hybrid switched-capacitor self-balanced inverter." IEEE Transactions on Circuits and Systems II: Express Briefs 68, no. 3 (2020): 978-982. [13] S. Islam, M.D. Siddique, A. Iqbal, and S. Mekhilef. "A 9-and 13-level switched-capacitor-based multilevel inverter with enhanced self-balanced capacitor voltage capability." IEEE Journal of Emerging and Selected Topics in Power Electronics 10, no. 6 (2022): 7225-7237. [14] T. Roy, P.K. Sadhu, and A. Dasgupta. "Cross-switched multilevel inverter using novel switched capacitor converters." IEEE Transactions on Industrial Electronics 66, no. 11 (2019): 8521-8532. [15] V. Anand, and V. Singh. "A 13-level switched-capacitor multilevel inverter with single DC source." IEEE Journal of Emerging and Selected Topics in Power Electronics 10, no. 2 (2021): 1575-1586. [16] T.T. Tran, M.K. Nguyen, T.D. Duong, Y.C. Lim, and J.H. Choi. "A switched-capacitor-based six-level inverter." IEEE Transactions on Power Electronics 37, no. 4 (2021): 4804-4816. [17] Y. Ye, G. Zhang, X. Wang, Y. Yi, and K.W.E. Cheng. "Self-balanced switched-capacitor thirteen-level inverters with reduced capacitors count." IEEE Transactions on Industrial Electronics 69, no. 1 (2021): 1070-1076. [18] N. Sandeep. "A 13-level switched-capacitor-based boosting inverter." IEEE Transactions on Circuits and Systems II: Express Briefs 68, no. 3 (2020): 998-1002. [19] A. Sheir, M.Z. Youssef, and M. Orabi. "A novel bidirectional T-type multilevel inverter for electric vehicle applications." IEEE Transactions on Power Electronics 34, no. 7 (2018): 6648-6658. [20] B.P. McGrath, and D.G. Holmes. "Multicarrier PWM strategies for multilevel inverters." IEEE Transactions on Industrial Electronics 49, no. 4 (2002): 858-867. [21] H.R. Baghaee, A. Kashefi Kaviani, M. Mirsalim, and G.B. Gharehpetian. "Harmonic optimization in single DC source multi-level inverters using RBF neural networks." In 2012 3rd Power Electronics and Drive Systems Technology (PEDSTC), pp. 403-409. IEEE, 2012. [22] S. Du, J. Liu, and T. Liu. "Modulation and closed-loop-based DC capacitor voltage control for MMC with fundamental switching frequency." IEEE Transactions on Power Electronics 30, no. 1 (2014): 327-338. [23] M.D. Siddique, B.P. Reddy, A. Iqbal, and S. Mekhilef. "Reduced switch count‐based N‐level boost inverter topology for higher voltage gain." IET Power Electronics 13, no. 15 (2020): 3505-3509. [24] H.K. Jahan, M. Abapour, and K. Zare. "Switched-capacitor-based single-source cascaded H-bridge multilevel inverter featuring boosting ability." IEEE Transactions on Power Electronics 34, no. 2 (2018): 1113-1124. [25] H. Shayeghi, A. Seifi, M. Hosseinpour, and N. Bizon. "Developing a generalized multi-level inverter with reduced number of power electronics components." Sustainability 14, no. 9 (2022): 5545. [26] A. Seifi, M. Hosseinpour, and S.H. Hosseini. "A novel bidirectional modular multilevel inverter utilizing diode‐based bidirectional unit." International Journal of Circuit Theory and Applications 51, no. 7 (2023): 3226-3245. [27] P. Bhatnagar, A.K. Singh, K.K. Gupta, and Y.P. Siwakoti. "A switched-capacitors-based 13-level inverter." IEEE Transactions on Power Electronics 37, no. 1 (2021): 644-658. [28] S. Islam, M.D. Siddique, A. Iqbal, S. Mekhilef, and M. Al-Hitmi. "A switched capacitor-based 13-level inverter with reduced switch count." IEEE Transactions on Industry Applications 58, no. 6 (2022): 7373-7383. [29] T. Roy, and P.K. Sadhu. "A step-up multilevel inverter topology using novel switched capacitor converters with reduced components." IEEE Transactions on Industrial Electronics 68, no. 1 (2020): 236-247. [30] K.M. Kim, J.K. Han, and G.W. Moon. "A high step-up switched-capacitor 13-level inverter with reduced number of switches." IEEE Transactions on Power Electronics 36, no. 3 (2020): 2505-2509. [31] K.P. Panda, P.R. Bana, and G. Panda. "A switched-capacitor self-balanced high-gain multilevel inverter employing a single DC source." IEEE Transactions on Circuits and Systems II: Express Briefs 67, no. 12 (2020): 3192-3196.
| ||
آمار تعداد مشاهده مقاله: 49 تعداد دریافت فایل اصل مقاله: 48 |