
تعداد نشریات | 21 |
تعداد شمارهها | 631 |
تعداد مقالات | 9,285 |
تعداد مشاهده مقاله | 67,838,578 |
تعداد دریافت فایل اصل مقاله | 14,270,919 |
On the capability, non-abelian tensor square and non-commuting graph of prime power groups | ||
International Journal of Nonlinear Analysis and Applications | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 24 خرداد 1404 اصل مقاله (372.88 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.29806.4264 | ||
نویسندگان | ||
Abdulqader Mohammed Abdullah Basri1؛ Kayvan Moradipour* 2 | ||
1Department of Mathematics, College of Education, Seiyun University (SU), Yemen | ||
2Department of Mathematics, Technical and Vocational University (TVU), Tehran, Iran | ||
تاریخ دریافت: 13 بهمن 1401، تاریخ بازنگری: 15 خرداد 1403، تاریخ پذیرش: 04 تیر 1403 | ||
چکیده | ||
In this paper, we give necessary and sufficient conditions under which finite non-abelian metacyclic $p$-group ($p$ an odd prime) $G$ is capable. We also, determine the non-abelian tensor square $ G\otimes G$ for the groups of order $p^{\alpha+\beta}$ for some $\alpha, \beta\in \mathbb{N}$. Finally, we obtain some conditions on the parameters of two prime power groups $G_p$ and $G_q$ in which the groups have isomorphic non-commuting graphs. | ||
کلیدواژهها | ||
Prime power group؛ capable group؛ tensor square؛ isomorphic graphs | ||
مراجع | ||
[1] A. Abdollahi and H. Shahverdi, Non-commuting graphs of nilpotent groups, Commun. Algebra 42 (2014), 3944–3949. [2] J.R. Beuerle and L.C. Kappe, Infinite metacyclic groups and their non-abelian tensor squares, Proc. Edinburgh Math. Soc. 43 (2000), 65–662. [3] M.R. Bacon and L.C. Kappe, On capable p-group of nilpotency class two, Illinois J. Math. 47 (2003), 49–62. [4] J.R. Beuerle, An elementary classification of finite metacyclic p-groups of class at least three Algebra Colloq. 12 (2005), no. 4, 553–562. [5] F.R. Beyl, U. Felgner, and P. Schmid, On groups occurring as center factor groups, J. Algebra 61 (1979), 161–177. [6] M. Hall and J.K. Senior, The Groups of Order 2 n(n ≤ 6), MacMillan Co., New York. 1964. [7] S.H. Jafari, P. Niroomand, and A. Erfanian, The non-abelian tensor square and Schur multiplier of groups of order p2q, pq2 and p2qr, Algebra Colloq. 9 (2011), 68–78. [8] R. Johnson and E.F. Robertson, Some computations of the non-abelian tensor products of groups, J. Algebra 111 (1987), no. 1, 177–202. [9] L.C. Kappe, N.M. Mohd Ali, and N.H. Sarmin, On the capability of finitely generated nontorsion groups nilpotency class two, Glasgow Math. J. 53 (2011), 411–417. [10] L.C. Kappe, N.H. Sarmin, and M.P. Visscher, Two generator two-groups of class two and their non-abelian tensor squares, Glas. Math. J. 41 (1999), 417–430. [11] K. Moradipour, Conjugacy class sizes and n-th commutativity degrees of some finite groups, Compt. Rend. Acad. Bulg. Sci. 71 (2018), no. 4, 453–459. [12] S. Rashid, N.H. Sarmin, A. Erfanian, and N.M. Mohd Ali, On the non-abelian tensor square and capability of groups of order p2q, Arch. Math. 97 (2011), 299–306. [13] S. Rashid, N.H. Sarmin, R. Zainal, A. Erfanian, and N.M. Mohd Ali, A note on the non-abelian tensor square, Indian J. Sci. Technol. 5 (2012), 2877–2879. | ||
آمار تعداد مشاهده مقاله: 7 تعداد دریافت فایل اصل مقاله: 2 |