
تعداد نشریات | 21 |
تعداد شمارهها | 635 |
تعداد مقالات | 9,313 |
تعداد مشاهده مقاله | 67,881,102 |
تعداد دریافت فایل اصل مقاله | 17,075,327 |
Bi-objective IoT applications deployment in fog environment using parallel ACO | ||
International Journal of Nonlinear Analysis and Applications | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 03 تیر 1404 اصل مقاله (1.24 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.31875.4729 | ||
نویسندگان | ||
Fatemeh Saadian1؛ Homayun Motameni* 2؛ Mehdi Golsorkhtabaramiri1 | ||
1Department of Computer Engineering, Babol Branch, Islamic Azad University, Babol, Iran | ||
2Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran | ||
تاریخ دریافت: 01 شهریور 1402، تاریخ پذیرش: 12 مهر 1402 | ||
چکیده | ||
Nowadays, the Internet of Things (IoT) is inevitable in human daily life. Many IoT-based applications are executed on interoperable devices via the IoT-Fog-Cloud continuum to satisfy users’ requirements. Such applications are generally time-sensitive, so they must be executed in real-time. The time constraint satisfaction strongly depends on the strategy of application placement on processing nodes. In this paper, a multi-objective optimization strategy for deploying microservices of real-time IoT applications is presented, which is considered among the challenging problems in fog and edge environments. A bi-objective optimization model for three-level deadline-aware application services is proposed, which is solved by using a parallel version of the Ant Colony Optimization (ACO) metaheuristic. The simulation results using IFogSim2, the new release of the famous Fog simulator IFogSim, show the superiority of the proposed approach compared to counterpart algorithms in terms of total resource wastage, total network latency, the main objective function, and execution time. | ||
کلیدواژهها | ||
Fog computing؛ Internet of things؛ service placement problem؛ real-time applications | ||
مراجع | ||
[1] E. Ahmed, I. Yaqoob, I.A. Targio Hashem, I. Khan, A. Ibrahim Abdalla Ahmed, M. Imran, and A.V. Vasilakos, The role of big data analytics in Internet of Things, Comput. Networks 129 (2017), 459–471. [2] A.H. Alavi, P. Jiao, W.G. Buttlar, and N. Lajnef, Internet of Things-enabled smart cities: State-of-the-art and future trends, Measurement 129 (2018), 589–606. [3] H.K. Apat, K. Bhaisare, B. Sahoo, and P. Maiti, A nature-inspired-based multi-objective service placement in fog computing environment, Intell. Syst.: Proc. ICMIB 2020, Springer, 2021, pp. 293–304. [4] M. Ayoubi, M. Ramezanpour, and R. Khorsand, An autonomous IoT service placement methodology in fog computing, Software: Practice Exper. 51 (2021), no. 5, 1097–1120. [5] B. Barzegar, H. Motameni, and A. Movaghar, Eatsdcd: A green energy-aware scheduling algorithm for parallel task-based application using clustering, duplication and DVFS technique in cloud datacenters, J. Intell. Fuzzy Syst. 36 (2019), no. 6, 5135–5152. [6] A.R. Benamer, H. Teyeb, and N. Ben Hadj-Alouane, Latency-aware placement heuristic in fog computing envi[1]ronment, On the Move to Meaningful Internet Systems. OTM Conf.: Confederated Int. Conf.: CoopIS, C&TC, and ODBASE 2018, Valletta, Malta, October 22-26, 2018, Proc. Part II, Springer, 2018, pp. 241–257. [7] K. Bilal, O. Khalid, A. Erbad, and S.U. Khan, Potentials, trends, and prospects in edge technologies: Fog, cloudlet, mobile edge, and micro data centers, Comput. Networks 130 (2018), 94–120. [8] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, Fog computing and its role in the internet of things, Proc. First Edit. MCC Workshop on Mobile Cloud Comput., 2012, pp. 13–16. [9] A. Brogi, S. Forti, C. Guerrero, and I. Lera, How to place your apps in the fog: State of the art and open challenges, Software: Practice Exper. 50 (2020), no. 5, 719–740. [10] A. Brogi, S. Forti, and A. Ibrahim, Optimising qos-assurance, resource usage and cost of fog application deployments, Cloud Comput. Serv. Sci.: 8th Int. Conf., CLOSER 2018, Funchal, Madeira, Portugal, March 19-21, 2018, Revised Selected Papers 8, Springer, 2019, pp. 168–189. [11] M. Dadashi Gavaber and A. Rajabzadeh, Badep: Bandwidth and delay efficient application placement in fog-based IoT systems, Trans. Emerg. Telecommun. Technol. 32 (2021), no. 8, e4136. [12] S. Fatehi, H. Motameni, B. Barzegar, and M. Golsorkhtabaramiri, Energy aware multi objective algorithm for task scheduling on DVFS-enabled cloud datacenters using fuzzy NSGA-II, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 2, 2303–2331. [13] R. Fayos-Jordan, S. Felici-Castell, J. Segura-Garcia, J. Lopez-Ballester, and M. Cobos, Performance comparison of container orchestration platforms with low cost devices in the fog, assisting Internet of Things applications, J. Network Comput. Appl. 169 (2020), 102788. [14] C. Guerrero, I. Lera, and C. Juiz, Evaluation and efficiency comparison of evolutionary algorithms for service placement optimization in fog architectures, Future Gen. Comput. Syst.97 (2019), 131–144. [15] C. Guerrero, I. Lera, and C. Juiz, A lightweight decentralized service placement policy for performance optimization in fog computing, J. Ambient Intell. Human. Comput. 10 (2019), 2435–2452. [16] H. Gupta, A.V. Dastjerdi, S.K. Ghosh, and R. Buyya, iFogSim: A toolkit for modeling and simulation of resource management techniques in the Internet of Things, edge and fog computing environments, Software: Practice Exper.47 (2017), no. 9, 1275–1296. [17] M. Haghi Kashani, A.M. Rahmani, and N. Jafari Navimipour, Quality of service-aware approaches in fog computing, Int. J. Commun. Syst. 33 (2020), no. 8, e4340. [18] H.O. Hassan, S. Azizi, and M. Shojafar, Priority, network and energy-aware placement of IoT-based application services in fog-cloud environments, IET Commun. 14 (2020), no. 13, 2117–2129. [19] A. Hedhli and H. Mezni, A survey of service placement in cloud environments, J. Grid Comput. 19 (2021), no. 3, 23. [20] P. Kayal and J. Liebeherr, Autonomic service placement in fog computing, IEEE 20th Int. Sympos. A World of Wireless, Mobile Multimedia Networks, IEEE, 2019, pp. 1–9. [21] W.Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, Edge computing: A survey, Future Gen. Comput. Syst. 97 (2019), 219–235. [22] H. Kopetz and W. Steiner, Real-Time Systems: Design Principles for Distributed Embedded Applications, Springer Nature, 2022. [23] M. Laroui, B. Nour, H. Moungla, M.A. Cherif, H. Afifi, and M. Guizani, Edge and fog computing for IoT: A survey on current research activities and future directions, Comput. Commun. 180 (2021), 210–231. [24] C. Liu, J. Wang, L. Zhou, and A. Rezaeipanah, Solving the multi-objective problem of IoT service placement in fog computing using cuckoo search algorithm, Neural Process. Lett.54 (2022), no. 3, 1823–1854. [25] H. Liu, F. Eldarrat, H. Alqahtani, A. Reznik, X. De Foy, and Y. Zhang, Mobile edge cloud system: Architectures, challenges, and approaches, IEEE Syst. J. 12 (2017), no. 3, 2495–2508. [26] R. Mahmud, R. Kotagiri, and R. Buyya, Fog computing: A taxonomy, survey and future directions, Internet of everything: algorithms, methodologies, technologies and perspectives, Springer, 2018, pp. 103–130. [27] R. Mahmud, S. Pallewatta, M. Goudarzi, and R. Buyya, IFogSim2: An extended IFogSim simulator for mobility, clustering, and microservice management in edge and fog computing environments, J. Syst. Software 190 (2022), 111351. [28] A.M. Maia, Y. Ghamri-Doudane, D. Vieira, and M.F. de Castro, An improved multi-objective genetic algorithm with heuristic initialization for service placement and load distribution in Edge computing, Comput. Networks 194 (2021), 108146. [29] J. Masoudi, B. Barzegar, and H. Motameni, Energy-aware virtual machine allocation in DVFS-enabled cloud data centers, IEEE Access 10 (2021), 3617–3630. [30] S. Misra and N. Saha, Detour: Dynamic task offloading in software-defined fog for IoT applications, IEEE J. Selected Areas Commun. 37 (2019), no. 5, 1159–1166. [31] B.V. Natesha and R.M.R. Guddeti, Adopting elitism-based genetic algorithm for minimizing multi-objective problems of IoT service placement in fog computing environment, J. Network Comput. Appl. 178 (2021), 102972. [32] Z.M. Nayeri, T. Ghafarian, and B. Javadi, Application placement in fog computing with AI approach: Taxonomy and a state of the art survey, J. Network Comput. Appl. 185 (2021), 103078. [33] B. Nikzad, B. Barzegar, and H. Motameni, Sla-aware and energy-efficient virtual machine placement and consolidation in heterogeneous DVFS enabled cloud datacenter, IEEE Access 10 (2022), 81787–81804. [34] Sh. Omer, S. Azizi, M. Shojafar, and R. Tafazolli, A priority, power and traffic-aware virtual machine placement of IoT applications in cloud data centers, J. Syst. Architect. 115 (2021), 101996. [35] J. Panadero, M. Selimi, L. Calvet, J.M. Marqu`es, and F. Freitag, A two-stage multi-criteria optimization method for service placement in decentralized Edge micro-clouds, Future Gen. Comput. Syst. 121 (2021), 90–105. [36] Zh. Peng, B. Barzegar, M. Yarahmadi, H. Motameni, and P. Pirouzmand, Energy-aware scheduling of workflow using a heuristic method on green cloud, Sci. Program. 2020 (2020), no. 1, 8898059. [37] X. Ren, Zh. Zhang, and S.M. Arefzadeh, An energy-aware approach for resource managing in the fog-based internet of things using a hybrid algorithm, Int. J. Commun. Syst. 34 (2021), no. 1, e4652. [38] M. Salimian, M. Ghobaei-Arani, and A. Shahidinejad, Toward an autonomic approach for Internet of Things service placement using gray wolf optimization in the fog computing environment, Software: Practice Exper. 51 (2021), no. 8, 1745–1772. [39] M. Salimian, M. Ghobaei-Arani, and A. Shahidinejad, An evolutionary multi-objective optimization technique to deploy the IoT services in fog-enabled networks: An autonomous approach, Appl. Artific. Intell. 36 (2022), no. 1, 2008149. [40] N. Sarrafzade, R. Entezari-Maleki, and L. Sousa, A genetic-based approach for service placement in fog computing, J. Supercomput. 78 (2022), no. 8, 10854–10875. [41] A.K. Shukla, R. Sharma, and P.K. Muhuri, A review of the scopes and challenges of the modern real-time operating systems, Int. J. Embedded Real-Time Commun. Syst. 9 (2018), no. 1, 66–82. [42] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and Ph. Leitner, Optimized IoT service placement in the fog, Serv. Orien. Comput. Appl. 11 (2017), no. 4, 427–443. [43] Statista, Internet of Things-number of connected devices worldwide 2015-2025, https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/, 2025. [44] M. Taneja and A. Davy, Resource aware placement of IoT application modules in fog-cloud computing paradigm, IFIP/IEEE Symp. Integ. Network Service Manag. (IM), IEEE, 2017, pp. 1222–1228. [45] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J. Kong, and J.P. Jue, All one needs to know about fog computing and related edge computing paradigms: A complete survey, J. Syst. Archit. 98 (2019), 289–330. | ||
آمار تعداد مشاهده مقاله: 12 تعداد دریافت فایل اصل مقاله: 4 |