
تعداد نشریات | 21 |
تعداد شمارهها | 636 |
تعداد مقالات | 9,326 |
تعداد مشاهده مقاله | 67,923,767 |
تعداد دریافت فایل اصل مقاله | 20,823,360 |
Norm of difference of two general polynomial weighted differentiation composition operators from Cauchy transform space into some analytic function spaces | ||
International Journal of Nonlinear Analysis and Applications | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 13 تیر 1404 اصل مقاله (413.6 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2025.36300.5355 | ||
نویسندگان | ||
Ebrahim Abbasi* 1؛ Mostafa Hassanlou2؛ Ali Ebrahimi3 | ||
1Department of Mathematics, Mahabad Branch, Islamic Azad University, Mahabad, Iran | ||
2Engineering Faculty of Khoy, Urmia University of Technology, Urmia, Iran | ||
3Department of Mathematics, Mahabad Branch, Islamic Azad University, Mahabad, Iran | ||
تاریخ دریافت: 29 آذر 1403، تاریخ بازنگری: 16 اسفند 1403، تاریخ پذیرش: 15 فروردین 1404 | ||
چکیده | ||
Let for $0\leq j\leq n$, $\varphi_j,\psi_j: \mathbb{D}\rightarrow\mathbb{D}$ and $u_j, v_j: \mathbb{D}\rightarrow\mathbb{C}$. In this paper, we investigate boundedness of operator $$S =\sum_{j=0}^n (D^j_{u_j, \varphi_j}-D^j_{v_j,\psi_j})$$ from Cauchy transform space into some analytic function spaces. Also, we obtain an exact formula for the norm of this operator. | ||
کلیدواژهها | ||
boundedness؛ Cauchy transform space؛ Dirichlet space؛ $m$th weighted type space | ||
مراجع | ||
[1] E. Abbasi, S. Li, and H. Vaezi, Weighted composition operators from the Bloch space to nth weighted-type spaces, Turk. J. Math. 44 (2020), no. 1, 108–117. [2] E. Abbasi, Y. Liu, and M. Hassanlou, Generalized Stevic-Sharma type operators from Hardy spaces into nth weighted type spaces, Turk. J. Math. 45 (2021), no. 4, 1543–1554. [3] E. Abbasi and M. Hassanlou, Generalized Stevic-Sharma type operators on spaces of fractional Cauchy transforms, Mediterr. J. Math. 21 (2024), no. 40, 1–11. [4] J. Cima and T.H. MacGregor, Cauchy Transforms of measures and univalent functions, Berenstein, C.A. (eds) Complex Analysis I. Lecture Notes in Mathematics, vol 1275, Springer, Berlin, Heidelberg, 1987. [5] J. Cima and A. Matheson, Cauchy transforms and composition operators, Illinois J. Math. 42 (1998), no. 1, 58–69. [6] J. Cima, A. Matheson, and W.T. Ross, The Cauchy Transform, Mathematical Surveys and Monographs. 125. Providence, RI: American Mathematical Society, 2006. [7] X. Guo and M. Wang, Difference of weighted composition operators on the space of Cauchy integral transforms, Taiwanese J. Math. 22 (2018), 1435–1450. [8] X. Guo and M. Wang, Linear combination of composition operators on Cauchy transform type spaces, Sci. China Math. 50 (2020), 1733–1744. [9] R.A. Hibschweiler and T.H. MacGregor, Fractional Cauchy Transforms, Chapman and Hall. Boca Raton, FL: CRC, 2006. [10] R.A. Hibschweiler, Composition operators on spaces of fractional Cauchy transforms, Complex Anal. Oper. Theory 6 (2012), 897–911. [11] T.H. MacGregor, Fractional Cauchy transforms, J. Comput. Appl. Math. 105 (1999), no. 1-2, 93–108. [12] A. Sharma and R. Krishan, Difference of composition operators from the space of Cauchy integral transforms to the Dirichlet space, Complex Anal. Oper. Theory 10 (2016), 141–152. [13] A. Sharma, R. Krishan, and E. Subhadarsini, Difference of composition operators from the space of Cauchy integral transforms to Bloch-type spaces, Integral Transforms Spec. Funct. 28 (2017), 145–155. [14] M. Wang and X. Guo, Difference of differentiation composition operators on the fractional Cauchy transforms spaces, Numer. Funct. Anal. Optim. 39 (2018), 1291–1315. [15] K. Zhu, Operator Theory in Function Spaces, Pure and Applied Mathematics, Marcel Dekker, Inc., New York and Basel, 1990. [16] X. Zhu, E. Abbasi, and D. Molaei, Weighted composition operators from the Besov space into nth weighted type spaces, Math. Slovaca 72 (2022), no. 4, 977–992. [17] X. Zhu, Q. Hu, and D. Qu, Polynomial differentiation composition operators from Besov-type spaces into Bloch-type spaces, Math. Meth. Appl. Sci. 47 (2024), no. 1, 147–168. | ||
آمار تعداد مشاهده مقاله: 10 تعداد دریافت فایل اصل مقاله: 11 |