- Jatti, V.S., Tamboli, S., Patel, P., Shaikh, S. & Gulia, V., 2024. Optimising the impact strength of 3D printed PLA components using metaheuristic algorithms. Advances in Materials Science, 24(2), p.80. https://doi.org/10.2478/adms-2024-0009
- Melentiev, R., Yudhanto, A., Tao, R., Vuchkov, T. & Lubineau, G., 2022. Metallization of polymers and composites: State-of-the-art approaches. Materials & Design, 221, p.110958. https://doi.org/10.1016/j.matdes.2022.110958
- Shaban, S.M., Kang, J. & Kim, D.H., 2020. Surfactants: Recent advances and their applications. Composites Communications, 22, p.100537. https://doi.org/10.1016/j.coco.2020.100537
- Gong, K., Liu, H., Huang, C., Cao, Z., Fuenmayor, E. & Major, I., 2022. Hybrid manufacturing of acrylonitrile butadiene styrene (ABS) via the combination of material extrusion, additive manufacturing, and injection molding. Polymers, 14(23), p.5093. https://doi.org/10.3390/polym14235093
- Shishavan, S.M., Azdast, T. & Ahmadi, S.R., 2014. Investigation of the effect of nanoclay and processing parameters on the tensile strength and hardness of injection molded acrylonitrile butadiene styrene–organoclay nanocomposites. Materials & Design, 58, pp.527–534. https://doi.org/10.1016/j.matdes.2014.02.014
- Mohammed, A.J., Mohammed, A.S. & Mohammed, A.S., 2023. Prediction of tribological properties of UHMWPE/SiC polymer composites using machine learning techniques. Polymers, 15(20), p.4057. https://doi.org/10.3390/polym15204057
- Esmaeili, H. & Rizvi, R., 2023. An accelerated strategy to characterize mechanical properties of polymer composites using the ensemble learning approach. Computational Materials Science, 229, p.112432. https://doi.org/10.1016/j.commatsci.2023.112432
- Jain, P., Joshi, U., Joshi, A., Patel, V. & Thakor, S., 2024. Comparative analysis of machine learning techniques for predicting wear and friction properties of MWCNT reinforced PMMA nanocomposites. Ain Shams Engineering Journal, 15(9), p.102895. https://doi.org/10.1016/j.asej.2024.102895
- Kurt, H.I. & Oduncuoglu, M., 2015. Application of a neural network model for prediction of wear properties of ultrahigh molecular weight polyethylene composites. International Journal of Polymer Science, 2015, pp.1–11. https://doi.org/10.1155/2015/315710
- Aliyu, I.K., Azam, M.U., Lawal, D.U. & Samad, M.A., 2019. Optimization of SiC concentration and process parameters for a wear-resistant UHMWPE nanocomposite. Arabian Journal for Science and Engineering, 45(2), pp.849–860. https://doi.org/10.1007/s13369-019-04164-3
- Abdellah, M.Y., Fathi, H.I., Abdelhaleem, A.M. & Dewidar, M., 2018. Mechanical properties and wear behavior of a novel composite of acrylonitrile–butadiene–styrene strengthened by short basalt fiber. Journal of Composites Science, 2(2), p.34. https://doi.org/10.3390/jcs2020034
- Bulanda, K., Oleksy, M. & Oliwa, R., 2023. Polymer composites based on polycarbonate/acrylonitrile-butadiene-styrene used in rapid prototyping technology. Polymers, 15(6), p.1565. https://doi.org/10.3390/polym15061565
- Amena, B.T., Altenbach, H., Tibba, G.S. & Hossain, N., 2022. Investigation of mechanical properties of coffee husk-HDPE-ABS polymer composite using injection-molding method. Journal of Composites Science, 6(12), p.354. https://doi.org/10.3390/jcs6120354
- Raza, M.A., Maqsood, M.F., Rehman, Z.U., Westwood, A., Inam, A., Sattar, M.M.S. & Ilyas, M.T., 2020. Thermally reduced graphene oxide-reinforced acrylonitrile butadiene styrene composites developed by combined solution and melt mixing method. Arabian Journal for Science and Engineering, 45, pp.9559–9568. https://doi.org/10.1007/s13369-020-04845-4
- Rasana, N., Jayanarayanan, K., Mohan, H.T. & Keller, T., 2021. Static and dynamic mechanical properties of nanosilica and multiwalled carbon nanotube reinforced acrylonitrile butadiene styrene composites: theoretical mechanism of nanofiller reinforcement. Iranian Polymer Journal, 30, pp.1211–1225. https://doi.org/10.1007/s13726-021-00962-5
- Triantou, M.I., Stathi, K.I. & Tarantili, P.A., 2019. Thermal, mechanical, and dielectric properties of injection molded graphene nanocomposites based on ABS/PC and ABS/PP blends. Polymer Composites, 40(S2), pp.E1662–E1672. https://doi.org/10.1002/pc.25112
- Joynal Abedin, F.N., Hamid, H.A., Alkarkhi, A.F., Amr, S.S.A., Khalil, N.A., Ahmad Yahaya, A.N. & Zulkifli, M., 2021. The effect of graphene oxide and SEBS-g-MAH compatibilizer on mechanical and thermal properties of acrylonitrile-butadiene-styrene/talc composite. Polymers, 13(18), p.3180. https://doi.org/10.3390/polym13183180
- Jatti, V.S., Saiyathibrahim, A., Krishnan, R.M. & Balaji, K., 2024. Prediction of tribological behavior of acrylonitrile butadiene styrene polymer matrix composites employing copper powders. SAE International Journal of Materials and Manufacturing, 17(4), pp.365–374. https://doi.org/10.4271/05-17-04-0026
- Davim, J.P., 2017. Green Composites: Materials, Manufacturing and Engineering. De Gruyter, Berlin. https://doi.org/10.1515/9783110435788
- Kumar, K., Babu, B.S. & Davim, J.P., 2022. Hybrid Composites: Processing, Characterization, and Applications. De Gruyter, Berlin. https://doi.org/10.1515/9783110724684
- Vigneshwaran, G., Vijayaraghavan, M., Sivamanikandan, K., Keerthana, K. and Balaji, K., 2017. Fluid-structure interaction over an aircraft wing. Bd, 13, pp.27-31.
- Katkar, A., Balajia, K. and Khandal, S.V., 2022. Numerical studies on fixed wing aircraft aerodynamic performance using injection suction mechanism. International Journal of Vehicle Structures & Systems, 14(5), pp.631-633.
- Arunkumar, A., Gowthaman, T.S., Muthuraj, R., Vinothkumar, S. and Balaji, K., 2017. Numerical investigation over dimpled wings of an aircraft. Int. J. Res. Appl. Sci. Eng. Technol, 5, p.2017.
- Davim, J.P., 2024. Sustainable and intelligent manufacturing: Perceptions in line with 2030 Agenda of Sustainable Development. BioResources, 19(1). https://doi.org/10.15376/biores.19.1.4-5
- Kurien, R.A., Kannan, G., Kurup, G.B., Reji, G.S., Santhosh, A., Paul, D. & Siengchin, S., 2024. Comparative mechanical and morphological characteristics of an innovative hybrid composite of vetiver and jute. Journal of Polymer Research, 31(12), p.356. https://doi.org/10.1007/s10965-024-04208-9
- Kurien, R.A., Koshy, C.P., Santhosh, A., Kurup, G.B., Paul, D. & Reji, G.S., 2022. A study on vetiver fiber and lemongrass fiber reinforced composites. Materials Today: Proceedings, 68, pp.2640–2645. https://doi.org/10.1016/j.matpr.2022.09.563
- Kurien, R.A., Arshad, A., Joseph, A., Sunil, A., Cherian, B.T., Rangappa, S.M. & Siengchin, S., 2024. Agave-jute fiber–reinforced hybrid composite for lightweight applications: Effect of hybridization. Biomass Conversion and Biorefinery, pp.1–14. https://doi.org/10.1007/s13399-024-05984-6
- Kurien, R.A., Kannan, G., Kurup, G.B., Reji, G.S., Santhosh, A., Paul, D. & Siengchin, S., 2024. Comparative mechanical and morphological characteristics of an innovative hybrid composite of vetiver and jute. Journal of Polymer Research, 31(12), p.356. https://doi.org/10.1007/s10965-024-04208-9
- Kannan, G., Thangaraju, R., Suttiruengwong, S., Shanmugam, V., Rangappa, S.M., Sumesh, K.R. & Siengchin, S., 2024. Effect of drilling process parameters on agro-waste-based polymer composites reinforced with banana fiber and coconut shell filler. Biomass Conversion and Biorefinery, pp.1–14. https://doi.org/10.1007/s13399-024-06140-w
- Kurien, R.A., Selvaraj, D.P., Sekar, M., Preno, C., Praveen, K.M. & Koshy, 2020. Tribological and mechanical performance characteristics of epoxy-resin composites reinforced with multi-walled carbon nanotubes for sustainable applications. Journal of Green Engineering, 10, pp.8859–8873.
- Balaji, K., Babu, V. and Sulthan, S., 2022. Design and development of multipurpose agriculture drone using lightweight materials. SAE International Journal of Aerospace, 16(01-16-02-0012), pp.177-183. https://doi.org/10.4271/01-16-02-0012
- Chen, K. & Liu, L., 2011. Geometric data perturbation for privacy preserving outsourced data mining. Knowledge and Information Systems, 29, pp.657–695. https://doi.org/10.1007/s10115-010-0362-4
- Ghouchan Nezhad Noor Nia, R., Jalali, M. & Houshmand, M., 2022. A graph-based k-nearest neighbor (KNN) approach for predicting phases in high-entropy alloys. Applied Sciences, 12(16), p.8021. https://doi.org/10.3390/app12168021
- Champa-Bujaico, E., García-Díaz, P. & Díez-Pascual, A.M., 2022. Machine learning for property prediction and optimization of polymeric nanocomposites: A state-of-the-art. International Journal of Molecular Sciences, 23(18), p.10712. https://doi.org/10.3390/ijms231810712
- Kadri, K., Kallel, A., Guerard, G., Abdallah, A.B., Ballut, S., Fitoussi, J. & Shirinbayan, M., 2024. Study of composite polymer degradation for high pressure hydrogen vessel by machine learning approach. Energy Storage, 6(4), e645. https://doi.org/10.1002/est2.645
- Rong, M.Z., Zhang, M.Q. & Ruan, W.H., 2006. Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: A review. Materials Science and Technology, 22(7), pp.787–796. https://doi.org/10.1179/174328406x101247
- Zhang, X., Shi, C., Liu, E., Zhao, N. & He, C., 2018. Effect of interface structure on the mechanical properties of graphene nanosheets reinforced copper matrix composites. ACS Applied Materials & Interfaces, 10(43), pp.37586–37601. https://doi.org/10.1021/acsami.8b09799
- Vijayan, S.N., Chelladurai, S.J.S., Saiyathibrahim, A., Rakesh, A.J.I.J., Thriveni, K., Preethi, V., Jatti, V.S., Karthik, S., Balaji, K. & Saranya, S., 2024. Static analysis of aluminum alloy ingot/zirconium diboride composites for automotive applications. SAE International Journal of Materials and Manufacturing, 18(1). https://doi.org/10.4271/05-18-01-0007
- Biswal, M., Jada, N., Mohanty, S. & Nayak, S.K., 2015. Recovery and utilisation of non-metallic fraction from waste printed circuit boards in polypropylene composites. Plastics Rubber and Composites Macromolecular Engineering, 44(8), pp.314–321. https://doi.org/10.1179/1743289815y.0000000021
- Vu, H.L., Ng, K.T.W., Richter, A. & An, C., 2022. Analysis of input set characteristics and variances on k-fold cross validation for a recurrent neural network model on waste disposal rate estimation. Journal of Environmental Management, 311, p.114869. https://doi.org/10.1016/j.jenvman.2022.114869
- Sawant, D.A., Jatti, V.S., Vibhute, A., Saiyathibrahim, A., Murali Krishnan, R., Bembde, S. & Balaji, K., 2024. Prediction of burn rate of ammonium perchlorate–hydroxyl-terminated polybutadiene composite solid propellant using supervised regression machine learning algorithms. Aerospace Systems, pp.1–9. https://doi.org/10.1007/s42401-024-00305-1
- Wiens, T.S., Dale, B.C., Boyce, M.S. & Kershaw, G.P., 2007. Three way k-fold cross-validation of resource selection functions. Ecological Modelling, 212(3–4), pp.244–255. https://doi.org/10.1016/j.ecolmodel.2007.10.005
- Jia, W., Sun, M., Lian, J. & Hou, S., 2022. Feature dimensionality reduction: A review. Complex & Intelligent Systems, 8(3), pp.2663–2693. https://doi.org/10.1007/s40747-021-00637-x
- Everson, R.M. & Fieldsend, J.E., 2005. Multi-class ROC analysis from a multi-objective optimisation perspective. Pattern Recognition Letters, 27(8), pp.918–927. https://doi.org/10.1016/j.patrec.2005.10.016
- Moradi, R., Berangi, R. & Minaei, B., 2019. A survey of regularization strategies for deep models. Artificial Intelligence Review, 53(6), pp.3947–3986. https://doi.org/10.1007/s10462-019-09784-7
- Banerjee, P., Dehnbostel, F.O. & Preissner, R., 2018. Prediction is a balancing act: Importance of sampling methods to balance sensitivity and specificity of predictive models based on imbalanced chemical data sets. Frontiers in Chemistry, 6. https://doi.org/10.3389/fchem.2018.00362
- Tharwat, A., Mahdi, H., Elhoseny, M. & Hassanien, A.E., 2018. Recognizing human activity in mobile crowdsensing environment using optimized K-NN algorithm. Expert Systems with Applications, 107, pp.32–44. https://doi.org/10.1016/j.eswa.2018.04.017
- Aljrees, T., 2024. Improving prediction of cervical cancer using KNN imputer and multi-model ensemble learning. PLoS ONE, 19(1), e0295632. https://doi.org/10.1371/journal.pone.0295632
- Chen, K. et al., 2019. Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data. Water Research, 171, p.115454. https://doi.org/10.1016/j.watres.2019.115454
|