
تعداد نشریات | 21 |
تعداد شمارهها | 641 |
تعداد مقالات | 9,370 |
تعداد مشاهده مقاله | 68,045,745 |
تعداد دریافت فایل اصل مقاله | 30,656,225 |
Determination of an unknown time dependent coefficient for semilinear time-fractional parabolic equation | ||
International Journal of Nonlinear Analysis and Applications | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 02 مرداد 1404 اصل مقاله (534.34 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.27835.3734 | ||
نویسندگان | ||
Rima Faizi* ؛ Atmania Rahima | ||
LMA Laboratory, Department of Mathematics, University of Badji Mokhtar, Annaba, Algeria | ||
تاریخ دریافت: 28 تیر 1401، تاریخ پذیرش: 05 آبان 1403 | ||
چکیده | ||
In this paper, an inverse problem of determining the time-dependent coefficient of a semilinear parabolic equation involving the Caputo fractional derivative in time, with nonlocal boundary and integral overdetermination conditions, is considered. Existence, uniqueness, and stability results of a classical solution are established using the Fourier method, the iteration method, and Gronwall's Lemma. Moreover, we provide an example to illustrate the obtained results. | ||
کلیدواژهها | ||
nonlocal boundary condition؛ iteration method؛ Gronwall's Lemma | ||
مراجع | ||
[1] T.S. Aleroev, M. Kirane, and S.A. Malik, Determination of a source term for a time fractional diffusion equation with an integral type over-determining condition, Electron. J. Differ. Equ. 2013 (2013), no. 270, 1–16. [2] J.R. Cannon, S.P. Esteva, and J.V.D. Hoek, A Galerkin procedure for the diffusion subject to the specification of mass, SIAM J. Numer. Anal. 24 (1987), 499–515. [3] J.R. Cannon, Y. Lin, and S. Wang, Determination of a control parameter in a parabolic partial differential equation, J. Aust. Math. Soc. Ser. B. 33 (1991), 149–163. [4] R. Faizi and R. Atmania, An inverse source problem of a semilinear time-fractional reaction–diffusion equation, Appl. Anal. 10 (2022), no. 1, 1–21. [5] M. Ginoa, S. Cerbelli, and H.E. Roman, Fractional diffusion equation and relaxation in complex viscoelastic materials, Phys. A. 191 (1992), 449–453. [6] V.A. Il’in and L.V. Kritskov, Properties of spectral expansions corresponding to non-self-adjoint differential operators, J. Math. Sci. 116 (2003), no. 5, 3489–3550. [7] VA. Il’in, How to express basis conditions and conditions for the equiconvergence with trigonometric series of expansions related to non-self-adjoint differential operators, Comput. Math. Appl. 34 (1997), 641–647. [8] M.I. Ismailov and M. Cicek, Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions, Appl. Math. Modell. 40 (2016), no. 7-8, 4891–4899. [9] B. Kaltenbacher and W. Rundell, On an inverse potential problem for a fractional reaction-diffusion equation, Inverse Probl. 35 (2019), no. 6, 065004. [10] F. Kanca and I. Baglan, An inverse problem for a quasilinear parabolic equation with nonlocal boundary and overdetermination conditions, J. Inequal. Appl. 2014 (2014), no. 1, 76. [11] F. Kanca and I. Baglan, Identifying an unknown time dependent coefficient for quasilinear parabolic equations, New Trends Math. Sci. 4 (2016), no. 3, 116–128. [12] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006. [13] G. Li, D. Zhang, X. Jia, and M. Yamamoto, Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation, Inverse Probl. 29 (2013), 065014. [14] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339 (2000), no. 1, 1–77. [15] E.I. Moiseev, The solution of a nonlocal boundary value problem by the spectral method, Differ. Equ. 35 (1999), no. 8, 1105–1112. [16] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. [17] W. Rundell, X. Xu and L. Zuo, The determination of an unknown boundary condition in a fractional diffusion equation, Appl. Anal.: Int. J. 92 (2013), no. 7, 1511–1526. [18] S.G. Samko, A.A. Kilbas, and D.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, 1993. [19] L. Settara and R. Atmania, An inverse coefficient-source problem for a time-fractional diffusion equation, Internat. J. Appl. Math. Stat. 57 (2018), no. 3, 68–78. [20] S. Wang, M. Zhao, and X. Li, Radial anomalous diffusion in an annulus, Phys. A. 390 (2011), 3397–3403. [21] Z. Zhang and Z. Zhou, Recovering the potential term in a fractional diffusion equation, IMA J. Appl. Math. 82 (2017), 579—600. | ||
آمار تعداد مشاهده مقاله: 9 تعداد دریافت فایل اصل مقاله: 3 |