
تعداد نشریات | 21 |
تعداد شمارهها | 646 |
تعداد مقالات | 9,451 |
تعداد مشاهده مقاله | 68,212,759 |
تعداد دریافت فایل اصل مقاله | 46,676,796 |
Hydrothermally Synthesized TiO2 Nanostructures on Ti foil for Visible Light Assisted Photocatalytic Degradation of Tetracycline | ||
Progress in Physics of Applied Materials | ||
دوره 6، شماره 1 - شماره پیاپی 10، فروردین 2026، صفحه 15-25 اصل مقاله (989.36 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22075/ppam.2025.38104.1152 | ||
نویسندگان | ||
Samira Yousefzadeh* ؛ Nastaran Rostam Jadidoleslam؛ Kosar Moharrami | ||
Department of Physics, Faculty of Science, Tabriz University of Technology, P.O. Box: 51335-1996, Tabriz, Iran | ||
تاریخ دریافت: 25 خرداد 1404، تاریخ بازنگری: 04 مرداد 1404، تاریخ پذیرش: 16 مرداد 1404 | ||
چکیده | ||
In this study, titanium dioxide (TiO2) nanostructures on titanium foil were synthesized through a hydrothermal procedure, subsequently followed by calcination at temperatures of 500, 600, and 700 °C. The morphological, structural, and optical properties were systematically characterized using SEM, XRD, and DRS analysis. The results indicated that the calcination temperature exerts a substantial influence on the morphology and crystalline phase composition of the TiO2 nanostructures. The calcined TiO2 nanostructure at 600 °C (T(600)) indicated a well-defined and interconnected sheets with porous structure. This architecture enhanced the surface-to-volume ratio, light absorption and scattering, facilitated efficient charge carrier separation and improved molecular accessibility and adsorption for tetracycline (TC) degradation. The T(600) sample exhibited better performance in visible light assisted photocatalytic degradation of tetracycline as compared to T(500) and T(700) samples due to its efficient charge carrier separation and transport in a proper rutile/anatase composition. This sample reached removal efficiency of 56.50%, accompanied by a first-order kinetic rate constant of 0.0058 min⁻¹ under visible light irradiation. The results were attributed visible light absorption by TC and TiO2 nanostructures along with proper charge separation in the appropriate crystalline phase composition of the T(600) sample. These findings underscore the pivotal role of calcination temperature in optimizing TiO2-based photocatalysts for efficient environmental remediation. | ||
کلیدواژهها | ||
TiO2 nanostructures؛ Calcination temperature؛ Tetracycline؛ Visible light؛ Photocatalytic efficiency | ||
مراجع | ||
[1] Kounatidis, D., Dalamaga, M., Grivakou, E., Karampela, I., Koufopoulos, P., Dalopoulos, V., Adamidis, N., Mylona, E., Kaziani, A. and Vallianou, N.G., 2024. Third-generation tetracyclines: current knowledge and therapeutic potential. Biomolecules, 14(7), p.783.
[2] Daghrir, R. and Drogui, P., 2013. Tetracycline antibiotics in the environment: a review. Environmental chemistry letters, 11(3), pp.209-227.
[3] Zenou, V.Y. and Bakardjieva, S., 2018. Microstructural analysis of undoped and moderately Sc-doped TiO2 anatase nanoparticles using Scherrer equation and Debye function analysis. Materials Characterization, 144, pp.287-296.
[4] Ma, J., Chen, Y., Zhou, G., Ge, H. and Liu, H., 2024. Recent advances in photocatalytic degradation of tetracycline antibiotics. Catalysts, 14(11), p.762.
[5] Chiarello, G.L., Paola, A.D., Palmisano, L. and Selli, E., 2011. Effect of titanium dioxide crystalline structure on the photocatalytic production of hydrogen. Photochemical & Photobiological Sciences, 10(3), pp.355-360.
[6] Filippatos, P.P., Kelaidis, N., Vasilopoulou, M., Davazoglou, D. and Chroneos, A., 2021. Structural, electronic, and optical properties of group 6 doped anatase TiO2: a theoretical approach. Applied Sciences, 11(4), p.1657.
[7] Peiris, S., de Silva, H.B., Ranasinghe, K.N., Bandara, S.V. and Perera, I.R., 2021. Recent development and future prospects of TiO2 photocatalysis. Journal of the Chinese Chemical Society, 68(5), pp.738-769.
[8] Hamza, M.A., Abd El-Rahman, S.A., Ramadan, S.K., Ezz-Elregal, E.-E.M., Rizk, S.A. and Abou-Gamra, Z.M., 2024. The enhanced visible-light-driven photocatalytic performance of nanocrystalline TiO2 decorated by quinazolinone-photosensitizer toward photocatalytic treatment of simulated wastewater. Journal of Photochemistry and Photobiology A: Chemistry, 452, p.115599.
[9] Qu, J., Chen, D., Li, N., Xu, Q., Li, H., He, J. and Lu, J., 2019. Ternary photocatalyst of atomic-scale Pt coupled with MoS2 co-loaded on TiO2 surface for highly efficient degradation of gaseous toluene. Applied Catalysis B: Environmental, 256, p.117877.
[10] Reyes, C., Fernandez, J., Freer, J., Mondaca, M.A., Zaror, C., Malato, S. and Mansilla, H.D., 2006. Degradation and inactivation of tetracycline by TiO2 photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 184(1-2), pp.141-146.
[11] Zhu, X.D., Wang, Y.J., Sun, R.J. and Zhou, D.M., 2013. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere, 92(8), pp.925-932.
[12] Wu, S., Hu, H., Lin, Y., Zhang, J. and Hu, Y.H., 2020. Visible light photocatalytic degradation of tetracycline over TiO2. Chemical Engineering Journal, 382, p.122842.
[13] Qin, C., Tang, J., Qiao, R. and Lin, S., 2022. Tetracycline sensitizes TiO2 for visible light photocatalytic degradation via ligand-to-metal charge transfer. Chinese Chemical Letters, 33(12), pp.5218-5222.
[14] Pang, D., Liu, Y., Song, H., Chen, D., Zhu, W., Liu, R., Yang, H., Li, A. and Zhang, S., 2021. Trace Ti3+-and N-codoped TiO2 nanotube array anode for significantly enhanced electrocatalytic degradation of tetracycline and metronidazole. Chemical Engineering Journal, 405, p.126982.
[15] Liu, B., Deng, D., Lee, J.Y. and Aydil, E.S., 2010. Oriented single-crystalline TiO2 nanowires on titanium foil for lithium ion batteries. Journal of Materials Research, 25(8), pp.1588-1594.
[16] Peng, L., Xu, X., Lv, Z., Song, J., He, M., Wang, Q., Yan, L., Li, Y. and Li, Z., 2012. Thermal and morphological study of Al2O3 nanofibers derived from boehmite precursor. Journal of thermal analysis and calorimetry, 110(2), pp.749-754.
[17] Hasmizam, R.M., Ahmad-Fauzi, M.N., Mohamed, A.R. and Sreekantan, S., 2014. Effect of calcination temperature on the morphological and phase structure of hydrothermally synthesized copper ion doped TiO2 nanotubes. Advanced Materials Research, 1024, pp.7-10.
[18] Ma, L., Fang, Z., Duan, J., Li, J., Zhu, K., Jiang, Y., Ji, B. and Yang, Z., 2024. Mesoporous TiO2@ g-C3N4 nanostructure-enhanced photocatalytic degradation of tetracycline under full-spectrum sunlight. Molecules, 29(24), p.5981.
[19] Cao, X., Tao, J., Xiao, X. and Nan, J., 2018. Hydrothermal-assisted synthesis of the multi-element-doped TiO2 micro/nanostructures and their photocatalytic reactivity for the degradation of tetracycline hydrochloride under the visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 364, pp.202-207.
[20] Romanovska, N., Manoryk, P., Selyshchev, O., Yaremov, P., Shylzshenko, O., Terebilenko, A., Shcherbakov, S. and Zahn, D.R.T., 2020. Influence of calcination temperature on structural-dimensional characteristics of C, S-doped TiO2 nanostructures and their photocatalytic activity in the ceftazidime and doxycycline photodegradation processes. Ukrainian Chemistry Journal, 86, pp.95-119.
[21] Sangchay, W., 2013. Effect of calcinations temperature on the structural and photocatalytic activity of TiO2 powders prepared by sol-gel method. Advanced Materials Research, 626, pp.329-333.
[22] Mozia, S., 2008. Effect of calcination temperature on photocatalytic activity of TiO2 Photodecomposition of mono-and polyazo dyes in water. Polish Journal of Chemical Technology, 10(3), pp.42-49.
[23] Yang, S., Ren, B., Chen, S., Liu, S., Zhang, Y. and Sun, Y., 2023. Influence of calcination temperature of TiO2 nanowires via hydrothermal method for photocatalytic degradation. Digest Journal of Nanomaterials and Biostructures, 18, pp.47-54.
[24] Fan, J., Zhao, L., Yu, J. and Liu, G., 2012. The effect of calcination temperature on the microstructure and photocatalytic activity of TiO2-based composite nanotubes prepared by an in situ template dissolution method. Nanoscale, 4(20), pp.6597-6603.
[25] Yang, J., Liu, Z., Wang, Y. and Tang, X., 2020. Construction of a rod-like Bi2O4 modified porous gC3N4 nanosheets heterojunction photocatalyst for the degradation of tetracycline. New Journal of Chemistry, 44(23), pp.9725-9735.
[26] Elbushra, H., Ahmed, M., Wardi, H. and Eassa, N., 2018. Synthesis and characterization of TiO2 using sol-gel method at different annealing temperatures. MRS Advances, 3(42-43), pp.2527-2535.
[27] Han, J.Y. and Bark, C.W., 2014. Influence of calcination temperature on the structure and optical properties of Bi3.25La0.75Ti3O12 powders. Journal of the Korean Physical Society, 65, pp.216-221.
[28] Yihunie, M.T., 2023. Effect of temperature sintering on grain growth and optical properties of TiO2 nanoparticles. Journal of Nanomaterials, 2023(1), p.3098452.
[29] Byrne, C., Fagan, R., Hinder, S., McCormack, D.E. and Pillai, S.C., 2016. New approach of modifying the anatase to rutile transition temperature in TiO2 photocatalysts. RSC advances, 6, pp.95232-95238.
[30] Manikandan, K., JafarAhamed, A. and Brahmanandhan, G., 2017. Synthesis, structural and optical characterization of TiO2 nanoparticles and its assessment to cytotoxicity activity. Journal of Environmental Nanotechnology, 6(3), pp.94-102.
[31] Mishra, V., Warshi, M.K., Sati, A., Kumar, A., Mishra, V., Kumar, R. and Sagdeo, P.R., 2019. Investigation of temperature-dependent optical properties of TiO2 using diffuse reflectance spectroscopy. SN Applied Sciences, 1, p.241.
[32] Li, W., Liang, R., Hu, A., Huang, Z. and Zhou, Y.N., 2014. Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts. RSC advances, 4, pp.36959-36966.
[33] Qin, Y., Li, Y., Tian, Z., Wu, Y. and Cui, Y., 2016. Efficiently Visible-light driven photoelectrocatalytic oxidation of As (III) at low positive biasing using Pt/TiO2 nanotube electrode. Nanoscale research letters, 11, p.32.
[34] Guo, Z., Prezhdo, O.V., Hou, T., Chen, X., Lee, S.T. and Li, Y., 2014. Fast energy relaxation by trap states decreases electron mobility in TiO2 nanotubes: time-domain Ab initio analysis. The Journal of Physical Chemistry Letters, 5(10), pp.1642-1647.
[35] Souza, D.R., Neves, J.V.S., França, Y.K. and Malheiro, W.C., 2021. TiO2 synthesis by the Pechini’s method and application for diclofenac photodegradation. Photochemistry and Photobiology, 97(1), pp.32-39.
[36] Abbas, M., 2020. Experimental investigation of titanium dioxide as an adsorbent for removal of Congo red from aqueous solution, equilibrium and kinetics modeling. Journal of Water Reuse and Desalination, 10(3), pp.251-266.
[37] Parrino, F., De Pasquale, C. and Palmisano, L., 2019. Influence of surface‐related phenomena on mechanism, selectivity, and conversion of TiO2‐induced photocatalytic reactions. ChemSusChem, 12(3), pp.589-602.
[38] Bouafıa-Cherguı, S., Zemmourı, H., Chabanı, M. and Bensmaılı, A., 2016. TiO2-photocatalyzed degradation of tetracycline: kinetic study, adsorption isotherms, mineralization and toxicity reduction. Desalination and Water Treatment, 57(35), pp. 16670-16677.
[39] Galedari, M., Ghazi, M.M. and Mirmasoomi, S.R., 2019. Photocatalytic process for the tetracycline removal under visible light: Presenting a degradation model and optimization using response surface methodology (RSM). Chemical Engineering Research and Design, 145, pp.323-333.
[40] Li, W., Ding, H., Ji, H., Dai, W., Guo, J. and Du, G., 2018. Photocatalytic degradation of tetracycline hydrochloride via a CdS-TiO2 heterostructure composite under visible light irradiation. Nanomaterials, 8(6), p.415.
[41] Phromma, S., Wutikhun, T., Kasamechonchung, P., Eksangsri, T. and Sapcharoenkun, C., 2020. Effect of calcination temperature on photocatalytic activity of synthesized TiO2 nanoparticles via wet ball milling sol-gel method. Applied Sciences,10(3), p.993.
[42] Collins-Martínez, V., Ortiz, A.L. and Elguézabal, A.A., 2007. Influence of the anatase/rutile ratio on the TiO2 photocatalytic activity for the photodegradation of light hydrocarbons. International Journal of Chemical Reactor Engineering, 5(1), p.92.
[43] Nasseh, N., Barikbin, B. and Taghavi, L., 2020. Photocatalytic degradation of tetracycline hydrochloride by FeNi3/SiO2/CuS magnetic nanocomposite under simulated solar irradiation: Efficiency, stability, kinetic and pathway study. Environmental Technology & Innovation, 20, p.101035.
[44] Dona, J., Garriga, C., Arana, J., Pérez, J., Colon, G., Macías, M. and Navio, J.A., 2007. The effect of dosage on the photocatalytic degradation of organic pollutants. Research on Chemical Intermediates, 33, pp.351-358.
[45] Zhu, X., Wang, Y. and Zhou, D., 2014. TiO2 photocatalytic degradation of tetracycline as affected by a series of environmental factors. Journal of soils and sediments, 14, pp.1350-1358.
[46] Zhenhai, W., Zikai, Z., Sen, W. and Zhi, F., 2024. Enhanced degradation of tetracycline by gas-liquid discharge plasma coupled with g-C3N4/TiO2. Plasma Science and Technology, 26, p.094007.
[47] Zhang, J., Zhang, S., Bian, X., Yin, Y., Huang, W., Liu, C., Liang, X. and Li, F., 2024. High efficiency removal performance of tetracycline by magnetic CoFe2O4/NaBiO3 photocatalytic synergistic persulfate technology. Molecules, 29(17), p.4055.
[48] Hasham Firooz, M., Naderi, A., Moradi, M. and Kalantary, R.R., 2024. Enhanced tetracycline degradation with TiO2/natural pyrite S-scheme photocatalyst. Scientific Reports, 14, p.4954.
[49] Oluwole, A.O. and Olatunji, O.S., 2022. Photocatalytic degradation of tetracycline in aqueous systems under visible light irridiation using needle-like SnO2 nanoparticles anchored on exfoliated g-C3N4. Environmental Sciences Europe, 34, p.5.
[50] Hu, M., Chen, W. and Wang, J., 2024. Photocatalytic degradation of tetracycline by La-Fe Co-doped SrTiO3/TiO2 composites: performance and mechanism study. Water, 16(2), p.210.
[51] Zhu, K., Ma, L., Duan, J., Fang, Z. and Yang, Z., 2025. Photocatalytic degradation of tetracycline hydrochloride using TiO2/CdS on nickel foam under visible light and RSM–BBD optimization. Catalysts, 15(2), p.113.
[52] Ma, Y., Peng, Q., Sun, M., Zuo, N., Mominou, N., Li, S., Jing, C. and Wang, L., 2022. Photocatalytic oxidation degradation of tetracycline over La/Co@ TiO2 nanospheres under visible light. Environmental Research, 215(2), p.114297. [53] Chen, X. and Mao, S.S., 2007. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical reviews, 107(7), pp.2891-2959.
[54] Diebold, U., 2003. The surface science of titanium dioxide. Surface science reports, 48(5-8), pp.53-229.
[55] Nosaka, Y. and Nosaka, A.Y., 2017. Generation and detection of reactive oxygen species in photocatalysis. Chemical reviews, 117(17), pp.11302-11336.
[56] Scanlon, D.O., Dunnill, C.W., Buckeridge, J., Shevlin, S.A., Logsdail, A.J., Woodley, S.M., Catlow, C.R.A., Powell, M.J., Palgrave, R.G., Parkin, I.P., Watson, G.W., Keal, T.W., Sherwood, P., Walsh, A. and Sokol, A.A., 2013. Band alignment of rutile and anatase TiO2. Nature materials, 12, pp.798-801. | ||
آمار تعداد مشاهده مقاله: 13 تعداد دریافت فایل اصل مقاله: 11 |