
تعداد نشریات | 21 |
تعداد شمارهها | 646 |
تعداد مقالات | 9,451 |
تعداد مشاهده مقاله | 68,212,781 |
تعداد دریافت فایل اصل مقاله | 46,680,202 |
Zero divisor graphs of classes of five radical zero commutative | ||
International Journal of Nonlinear Analysis and Applications | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 31 مرداد 1404 اصل مقاله (383.57 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.34289.5117 | ||
نویسندگان | ||
Hezron Saka Were* 1؛ Maurice Owino Oduor2 | ||
1Department of Mathematics, Egerton University, P.O. Box 536-20115, Egerton, Kenya | ||
2Department of Mathematics, Actuarial and Physical Sciences, University of Kabianga, P.O. Box 2030-20200, Kericho, Kenya | ||
تاریخ دریافت: 10 خرداد 1403، تاریخ بازنگری: 03 شهریور 1403، تاریخ پذیرش: 05 مهر 1403 | ||
چکیده | ||
This paper provides a characterization for zero divisor graphs of a completely primary finite ring $R$ satisfying the conditions $\left(Z\left(R\right)\right)^5=\left(0\right); \left(Z\left(R\right)\right)^4\neq \left(0\right)$ where $Z(R)$ is its subset of all zero divisors (including zero). This has been achieved through Anderson and Livingston's zero divisor graphs by precisely determining the graph invariants, including diameter, girth and the binding number, and graph characteristics including completeness, connectedness and partiteness. | ||
کلیدواژهها | ||
Completely Primary Finite Ring؛ Five Radical Zero؛ Zero Divisor Graphs | ||
مراجع | ||
[1] W.S. Adero, I. Daisy, and O.M. Oduor, On the zero divisor graphs of finite rings in which the product of any two zero divisors lies in the coefficient subring, J. Math. Statist. Sci. 2016 (2016), 524–533. [2] W.S. Adero and O.M. Oduor, On the zero divisor graphs of a class of commutative completely primary finite rings, J. Adv. Math. 12 (2016), 6021–6026. [3] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434–447. [4] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208–226. [5] S.B. Mulay, Cycles and symmetries of zero-divisors, Commun. Algebra 30 (2002), 3533–3558. [6] O.M. Oduor, On the zero divisor graphs of Galois rings, Afr. J. Pure Appl. Math. 3 (2016), 85–94. [7] N.F. Omondi, O.M. Onyango, and O.M. Oduor, On the adjacency and incidence matrices of the zero divisor graphs of a class of the square radical zero finite commutative rings, Int. J. Pure Appl. Math. 118 (2018), no. 3, 773–789. [8] M.O. Owino, On the ideal based zero divisor graphs of unital commutative rings and Galois ring module idealizations, J. Adv. Math. Comput. Sci. 36 (2021), no. 5, 1–5. [9] R. Raghavendran, Finite associative rings, Compos. Math. 21 (1969), no. 2, 195–229. [10] S.P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Commun. Algebra 31 (2003), no. 9, 4425–4443. [11] R.S. Wilson, On the structure of finite rings, Compos. Math. 26 (1973), no. 1, 79–93. | ||
آمار تعداد مشاهده مقاله: 6 تعداد دریافت فایل اصل مقاله: 6 |