
تعداد نشریات | 21 |
تعداد شمارهها | 647 |
تعداد مقالات | 9,466 |
تعداد مشاهده مقاله | 68,290,799 |
تعداد دریافت فایل اصل مقاله | 47,813,149 |
Maps on Banach *-algebras acting at the identity products | ||
International Journal of Nonlinear Analysis and Applications | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 08 شهریور 1404 اصل مقاله (320.79 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2025.34300.5120 | ||
نویسندگان | ||
Abbas Zivari-Kazempour* ؛ Ahmad Minapoor | ||
Department of Mathematics, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran | ||
تاریخ دریافت: 11 خرداد 1403، تاریخ بازنگری: 02 بهمن 1403، تاریخ پذیرش: 11 بهمن 1403 | ||
چکیده | ||
Let $A$ be a unital Banach $*$-algebra with unit $1$, and $X$ be a Banach $*$-$A$-bimodule. In this paper, we determining continuous linear maps $\delta:A\longrightarrow X$ that satisfy one of the following conditions: \[\delta(x \diamond y)=\delta(x)\diamond y, \] \[\delta(x \diamond y \diamond x)=\delta(x)\diamond y \diamond x,\] for all $x,y\in A$ with $xy=1$, where $x \diamond y=x^*y-y^*x$. We also characterize continuous linear maps $\phi:A\longrightarrow B$ which behave like homomorphisms at the identity products. | ||
کلیدواژهها | ||
Commuting map؛ Multiplier؛ self-adjoint؛ Banach *-algebra | ||
مراجع | ||
[1] Z. Bai and S. Du, Maps preserving product XY-YX∗ on von Neumann algebras, J. Math. Anal. Appl. 386 (2012), no. 1, 103–109. [2] M. Brešar, Centralizing mappings on von Neumann algebras, Proc. Amer. Math. Soc. 111 (1991), no. 2, 501–510. [3] M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385–394. [4] M. Brešar, Characterizing homomorphisms, derivations and multipliers in rings with idempotents, Proc. R. Soc. Edinb. Sect. A. 137 (2007), 9–21. [5] A. Essaleh and A. Peralta, Linear maps on C∗-algebras which are derivations or triple derivations at a point, Linear Algebra Appl. 538 (2018), 1–21. [6] H. Ghahramani and W. Jing, Lie centralizers at zero products on a class of operator algebras, Ann. Funct. Anal. 12 (2021), 1–12. [7] C. Li, F. Zhao, and Q. Chen, Nonlinear skew Lie triple derivations between factors, Acta Math. Sinica (English Series) 32 (2016) 821–830. [8] L. Molnar, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229–234. [9] M. Shavandi and A. Taghavi, Maps preserving n-tuple a∗b-b∗a derivations on factor von Neumann algebras, Publ. Inst. Math. 113 (2023), no. 127, 131–140. [10] M. Shavandi and A. Taghavi, Nonlinear triple product a∗b-b∗a derivations on ∗-algebras, Surv. Math. Appl. 19 (2024), 67–78. [11] A. Taghavi, H. Rohi, and V. Darvish, Nonlinear ∗-Jordan derivations on von Neumann algebras, Linear Multi[1]linear Algebra 64 (2016), 426–439. [12] Z. Wang and X. Fei, Maps on C∗-algebras are skew Lie triple derivations or homomorphisms at one point, Aims Math. 8(11) (2023), 25564–25571. [13] W. Yu and J. Zhang, Nonlinear ∗-Lie derivations on factor von Neumann algebras, Linear Algebra Appl. 437 (2012) 1979–1991. [14] F. Zhao and C. Li, Nonlinear ∗-Jordan triple derivations on von Neumann algebras, Math. Slovaca 68 (2018), 163—170. [15] A. Zivari-Kazempour, Characterization of n-Jordan multipliers, Vietnam J. Math. 50 (2022), 87–94. [16] A. Zivari-Kazempour, Characterizing n-multipliers on Banach algebras through zero products, Int. J. Nonlinear Anal. Appl. 14 (2023), no. 1, 1071–1078. [17] A. Zivari-Kazempour, Characterization of Jordan homomorphisms and Jordan derivations, Khayyam J. Math. 10 (2024), no. 1, 1–9. [18] A. Zivari-Kazempour and A. Bodaghi, Generalized derivations and generalized Jordan derivations on C∗-algebras through zero products, J. Math. 2022 (2022), Article ID 3386149, 1–6. | ||
آمار تعداد مشاهده مقاله: 6 تعداد دریافت فایل اصل مقاله: 4 |