| تعداد نشریات | 21 |
| تعداد شمارهها | 687 |
| تعداد مقالات | 9,985 |
| تعداد مشاهده مقاله | 70,959,074 |
| تعداد دریافت فایل اصل مقاله | 62,423,260 |
تحلیل روابط علّی و ساختاری عوامل مؤثر بر توسعه زنجیره تأمین معکوس در بستر انقلاب صنعتی چهارم با رویکرد ترکیبی ISM–DEMATEL | ||
| مدیریت زنجیره ارزش راهبردی | ||
| مقاله 2، دوره 2، شماره 4 - شماره پیاپی 7، دی 1404، صفحه 25-54 اصل مقاله (1.06 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22075/svcm.2025.39280.1059 | ||
| نویسندگان | ||
| حسین صیادی تورانلو1؛ زهرا عباسی میبدی* 2 | ||
| 1استاد گروه مدیریت، دانشکده علوم انسانی، دانشگاه میبد، میبد، ایران. | ||
| 2دانشجوی دکتری مدیریت صنعتی، گروه مدیریت، دانشکده علوم انسانی، دانشگاه میبد، میبد، ایران. | ||
| تاریخ دریافت: 14 مهر 1404، تاریخ بازنگری: 01 آبان 1404، تاریخ پذیرش: 04 آبان 1404 | ||
| چکیده | ||
| رقابت روزافزون و ضرورت حفظ محیطزیست، اهمیت اجرای لجستیک معکوس در زنجیره تأمین را افزایش داده است. صنعت 4.0 با تغییرات بنیادین در فرآیندهای تولید، فرصتهایی را برای ارتقای زنجیره تأمین معکوس در صنایع مختلف، بهویژه صنایع کاشی و سرامیک فراهم کرده است. این پژوهش با هدف شناسایی و تحلیل عوامل مؤثر بر زنجیره تأمین معکوس در صنایع کاشی و سرامیک در عصر صنعت 4.0 انجام شد و از روش دیمتل و مدلسازی ساختاری-تفسیری بهره برد. مطالعه حاضر از نوع کاربردی و روش گردآوری دادهها توصیفی-پیمایشی است. دادهها از طریق منابع کتابخانهای و میدانی جمعآوری و با استفاده از نظرات خبرگان اعتبارسنجی شدند. در این پژوهش، ۳۸ عامل مؤثر در 9 دسته شامل مدیریت، زیرساخت، قوانین، بازار، فناوری، محیطزیست، اقتصاد، سازمان و منابع انسانی شناسایی شدند. برای بررسی روابط میان این عوامل، از روش خبرهگزینی هدفمند استفاده شد و ۲۰ نفر از مدیران صنایع کاشی و سرامیک شهرستان میبد به عنوان جامعه هدف انتخاب شدند که از میان آنها ۱۳ نفر پرسشنامه را تکمیل و ارسال کردند. ابتدا با استفاده از روش دیمتل روابط و میزان تأثیرگذاری متقابل عوامل تحلیل شد و سپس با بهرهگیری از مدلسازی ساختاری-تفسیری عوامل سطحبندی گردیدند. یافتهها نشان داد که عامل مدیریت بیشترین تأثیر را دارد و سایر عوامل در سطوح بعدی قرار گرفتهاند. نتایج پژوهش نشان میدهد که پیادهسازی زنجیره تأمین معکوس در این صنعت میتواند به کاهش اثرات زیستمحیطی و توسعه پایدارکمک کند. | ||
| کلیدواژهها | ||
| زنجیره تأمین معکوس؛ صنعت 4.0؛ دیمتل؛ مدلسازی ساختاری- تفسیری؛ صنایع کاشی و سرامیک | ||
| عنوان مقاله [English] | ||
| Analysis of Causal and Structural Relationships among Factors Influencing the Development of Reverse Supply Chain in the Context of the Fourth Industrial Revolution Using an Integrated ISM–DEMATEL Approach | ||
| نویسندگان [English] | ||
| Hossein Sayyadi Tooranloo1؛ Zahra Abbasi Meybodi2 | ||
| 1Professor, Department of Management, Faculty of Humanities, University of Meybod, Meybod, Iran. | ||
| 2PhD Student, Industrial Management, Department of Management, Faculty of Humanities, University of Meybod, Meybod, Iran. | ||
| چکیده [English] | ||
| implementing reverse logistics in supply chains. Industry 4.0, through fundamental changes in production processes, has created opportunities to enhance reverse supply chains across various industries, particularly in the ceramic and tile sectors. This study aimed to identify and analyze the factors affecting reverse supply chains in the ceramic and tile industries in the era of Industry 4.0, employing the DEMATEL method and Interpretive Structural Modeling (ISM). The present research is applied in nature, and data collection followed a descriptive-survey approach. Data were gathered from both library and field sources and validated using expert opinions.In this study, 38 influencing factors were identified across nine categories: management, infrastructure, regulations, market, technology, environment, economy, organization, and human resources. To examine the relationships among these factors, purposive expert sampling was employed, selecting 20 managers from the ceramic and tile industries in Meybod County as the target population, of whom 13 completed and returned the questionnaires. First, the DEMATEL method was applied to analyze the interrelationships and mutual influences among the factors, and subsequently, Interpretive Structural Modeling was used to categorize the factors into hierarchical levels. The findings indicated that management exerts the greatest influence, with other factors positioned at subsequent levels. The results suggest that implementing a reverse supply chain in this industry can contribute significantly to reducing environmental impacts and promoting sustainable development. | ||
| کلیدواژهها [English] | ||
| Reverse supply chain, Industry 4.0, DEMATEL, ISM, Ceramic and Tile Industries | ||
| مراجع | ||
|
منابع
بهرامی، محمدرضا؛ هاشمزاده، غلامرضا؛ شاهمنصوری، اشرف و فتحی هفشجانی، کیامرث. (1404). تحلیل مؤلفههای مؤثر بر ارزیابی بلوغ صنعت 4.0 در بانکداری ایران. مهندسی سیستم و بهرهوری، 5(1)، 21-50. https://doi.org/10.22034/sep.2025.2047848.1246
حیدری هراتمه، مصطفی. (1403). ارائه الگوی بازارسازی فناوری در فرایند جهانیشدن. مدیریت زنجیره ارزش راهبردی، 1(1)، 96-114. doi: 10.22075/svcm.2024.35049.1005
رجبی، فرنام؛ حقیقت منفرد، جلال؛ اعتمادی، احمدرضا و کولوبندی، عبداله. (1402). ارائه مدل راهبردی پیادهسازی لجستیک معکوس در صنعت لوازمخانگی ایران. مدیریت سبز، 3(2)، 1-18. https://dorl.net/dor/20.1001.1.28210050.1402.3.2.1.5
رکنالدینی، سید علیرضا؛ عندلیب اردکانی، داود؛ زارع احمدآبادی، حبیب و حسینی بامکان، سیدمجتبی. (1402). مدلسازی توانمندسازهای صنعت ۴.0 در پیادهسازی زنجیره تأمین پایدار با رویکرد دیمتل- فرآیند تحلیل شبکهای فازی. چشمانداز مدیریت صنعتی، 13(1)، 141-172. https://doi.org/10.48308/jimp.13.1.141
رضایی مقدم، سعید و دوستی، اصلان. (1401). طراحی مدل ریاضی چند هدفه برنامه ریزی تولید تجمیعی در زنجیره تأمین معکوس با تابع کیفیت تولید تحت شرایط عدم قطعیت و استفاده از الگوریتم فراابتکاری MPSOGA) موردمطالعه صنعتHigh-Tech . مدیریت مهندسی و رایانش نرم، 8(2)، 212-235. https://doi.org/10.22091/jemsc.2020.6237.1141
رهبریپور، کسری؛ پاکدلفرد، محمدرضا؛ ستاری ساربانقلی، حسن و ولیزاده، نیما. (1404). تحلیل موانع دستیابی به صنعت ساخت چهارم با رویکرد مدلسازی ساختاری-تفسیری. مهندسی سیستم و بهرهوری، 6(1)، 1-38. https://doi.org/10.22034/sep.2025.2068090.1374
شفیعپور، مریم؛ فرقانی، محمدعلی و صادقی، زینالعابدین. (1404). اندازهگیری لجستیک معکوس در شرایط تولید ناقص ، تقاضای متغیر و نرخ بازگشت با درجات کیفیت مختلف: مطالعه موردی مجتمع مس باهنر کرمان. تصمیمگیری و تحقیق در عملیات، 10(2)، 214-237. https://doi.org/10.22105/dmor.2025.484648.1884
عمادی، سیدحمید؛ صادقیان، ابوالفضل؛ ربانی، مژده و دهقان دهنوی، حسن. (1403). کاربرد رویکرد کنترل بهینه در بهینهسازی سیستمهای موجودی تولیدی در زنجیره تأمین. مهندسی سیستم و بهرهوری، 4(1)، 85-98. https://doi.org/10.22034/msb.2024.2026595.1203
کالاشی، فریبرز؛ مهدوی، ایرج؛ تاجدین، علی و رضائیان، جواد. (1404). ارزیابی و انتخاب تأمینکنندگان در زنجیره تأمین حلقه بسته بادوام تحت عدم قطعیت ترکیبی. مهندسی سیستم و بهرهوری. 5(4)، 191-215. https://doi.org/10.22034/sep.2025.2066007.1355
کیانی، مهراد؛ عندلیب اردکانی، داود؛ میرفخرالدینی، سیدحیدر و زارع احمدآبادی، احمد. (1402). تحلیلی بر موانع پیاده سازی اقتصاد مدور و صنعت 4.0 در زنجیره تامین: رویکرد فراترکیب و دنپ فازی. چشمانداز مدیریت صنعتی، 13(4)، 9-45. https://doi.org/10.48308/jimp.13.4.9
محمودآبادی، مصطفی و عابدی، صادق. (1400). شناسایی و اولویتبندی عوامل مؤثر بر زنجیره تأمین لجستیک معکوس پسماند فاضلاب صنعتی در شرکت معدنی و صنعتی گلگهر. مدیریت صنعتی، 16(57)، 45-57. https://doi.org/10.30495/imj.2021.686119
مزروعی نصرآبادی، اسماعیل؛ صادقی آرانی، زهرا؛ فخاری، علیرضا و محمدکاظمی، مهدی. (1403). اثر موجی در زنجیره تأمین: تحلیل بر تشدیدکنندهها. مدیریت زنجیره ارزش راهبردی، 1(2)، 79-92. https://doi.org/10.22075/svcm.2025.9428
ملکپور کلبادینژاد و باقرینژاد، جعفر. (1402). ارائهی مدل دوهدفه مکانیابی- موجودی برای طراحی شبکه لجستیک مستقیم/معکوس یکپارچه. مهندسی سیستم و بهرهوری، 3(1)، 1-40. https://doi.org/10.22034/sep.2023.706141
وحیدیان، ویدا و داوودی، سید محمدرضا. (1397). شناسایی و اولویت بندی راهکارهای بکارگیری لجستیک معکوس با استفاده از رویکرد ترکیبی AHP فازی و TOPSIS فازی (مطالعه موردی: شرکت فولاد مبارکه اصفهان). پژوهشنامه بازرگانی، 22(86)، 125-164. https://dor.isc.ac/dor/20.1001.1.17350794.1397.22.86.5.4
References Ahmad, N., & Daghfous, A. (2010). Knowledge sharing through inter‐organizational knowledge networks: Challenges and opportunities in the United Arab Emirates. European Business Review, 22(2), 153-174. https://doi.org/10.1108/09555341011023506 Akyuz, E., & Celik, E. (2015). A fuzzy DEMATEL method to evaluate critical operational hazards during gas freeing process in crude oil tankers. Journal of Loss Prevention in the Process Industries, 38, 243-253. https://doi.org/10.1016/j.jlp.2015.10.006 Alfonso-Lizarazo, E. H., Montoya-Torres, J. R., & Gutiérrez-Franco, E. (2013). Modeling reverse logistics process in the agro-industrial sector: The case of the palm oil supply chain. Applied Mathematical Modelling, 37(23), 9652-9664. https://doi.org/10.1016/j.apm.2013.05.015 Amjad, M. S., Rafique, M. Z., & Khan, M. A. (2021). Leveraging optimized and cleaner production through Industry 4.0. Sustainable Production and Consumption, 26, 859–871. https://doi.org/10.1016/j.spc.2021.01.001 Ansari, M. F., Kharb, R. K., Luthra, S., Shimmi, S. L., & Chatterji, S. (2013). Analysis of barriers to implement solar power installations in India using interpretive structural modeling technique. Renewable and sustainable energy reviews, 27, 163-174. https://doi.org/10.1016/j.rser.2013.07.002 Badiezadeh, T., Saen, R. F., & Samavati, T. J. (2018). Assessing sustainability of supply chains by double frontier network DEA: A big data approach. Computers & Operations Research, 98, 284–290. https://doi.org/10.1016/j.cor.2017.06.003 Bahrami, M. R., Hashemzadeh, G. R., Shahmansoury, A., & Hafshejani, K. F. (2025). Analyzing effective components in Industry 4.0 maturity for Iranian banking. System Engineering and Productivity, 5(1), 21–50. [In Persian]. https://doi.org/10.22034/sep.2025.2047848.1246 Becker, J., Knackstedt, R., & Pöppelbuß, J. (2009). Developing maturity models for IT management: A procedure model and its application. Business & information systems engineering, 1(3), 213-222. https://doi.org/10.1007/s12599-009-0044-5 Bernon, M., Rossi, S., Cullen, J. J., & Management, L. (2011). Retail reverse logistics: A call and grounding framework for research. International Journal of Productivity and Performance Management, 41 (5), 484–510. https://doi.org/10.1108/09600031111138835 Butt, A. S. (2021). Strategies to mitigate the impact of COVID-19 on supply chain disruptions: a multiple case analysis of buyers and distributors. The International Journal of Logistics Management. https://doi.org/10.1108/IJLM-11-2020-0455 Chen, J. K. (2021). Improved DEMATEL-ISM integration approach for complex systems. Plos one, 16(7). https://doi.org/10.1371/journal.pone.0254694 Chileshe, N., Rameezdeen, R., Hosseini, M. R., & Lehmann, S. (2015). Barriers to implementing reverse logistics in South Australian construction organisations. Supply chain management: an international journal, 20(2), 179-204. https://doi.org/10.1108/SCM-10-2014-0325 Dev, N. K., Shankar, R., & Swami, S. (2020). Diffusion of green products in industry 4.0: Reverse logistics issues during design of inventory and production planning system. International Journal of Production Economics, 223, 107519. https://doi.org/10.1016/j.ijpe.2019.107519 Dehnad, A. H., & Bagheri, M. (2014). A review of the factors affecting the implementation of reverse logistics in the Iranian automotive industry. International Conference on Modern Researches in Management and Industrial Engineering, Tehran. [In Persian]. https://civilica.com/doc/435358 Emadi, S. H., Sadeghian, A., Rabani, M., & Dehghani Dehnavi, H. (2024). Application of optimal control approach in optimizing production inventory systems in the supply chain. Journal of Systems Engineering and Productivity, 4(1), 85–98. [In Persian]. https://doi.org/10.22034/msb.2024.2026595.1203 Flores, E., Xu, X., & Lu, Y. (2020). Human Capital 4.0: a workforce competence typology for Industry 4.0. Journal of Manufacturing Technology Management, 31(4), 687-703. https://doi.org/10.1108/JMTM-08-2019-0309 Ghobakhloo, M. (2020). Industry 4.0, digitization, and opportunities for sustainability. Journal of cleaner production, 252, 119869. https://doi.org/10.1016/j.jclepro.2019.119869. Heidari Haratemeh, M. (2024). Presenting a Model for Technology Market-making in the Globalization Process. Strategic Value Chain Management, 1(1), 96-114. [In Persian]. doi: 10.22075/svcm.2024.35049.1005 Hidayatno, A., Destyanto, A. R., & Hulu, C. A. (2019). Industry 4.0 technology implementation impact on industrial sustainable energy in Indonesia: A model conceptualization. Energy Procedia, 156, 227–233. https://doi.org/10.1016/j.egypro.2018.11.133 Homaei, R., Khosravi, M., & Hourali, M. (2020). Designing a conceptual model of reverse logistics management network with a supply chain innovation approach. Journal of Innovation and Value Creation, 16(8), 1–15. Hosseini Dehshiri, S. J., Amiri, M., Olfat, L., & Pishvaee, M. S. (2022). A Novel Robust Fuzzy Programming Approach for Closed-loop Supply Chain Network Design. Industrial Management Journal, 14(3), 421-457. https://doi.org/10.22059/imj.2022.330096.1007865 Jabbour, C. J. C., Fiorini, P. D. C., Ndubisi, N. O., Queiroz, M. M., & Piato, É. L. J. S. (2020). Digitally-enabled sustainable supply chains in the 21st century: A review and a research agenda. Science of The Total Environment, 725, 138177. https://doi.org/10.1016/j.scitotenv.2020.138177 Kalashi, F., Mahdavi, I., Tajdin, A., & Rezayan, J. (2025). Evaluation and selection of suppliers in a sustainable closed-loop supply chain under hybrid uncertainty. Journal of Systems Engineering and Productivity, 5(4), 191–215. [In Persian]. https://doi.org/10.22034/sep.2025.2066007.1355 Kalubanga, M., & Mbekeka, W. (2024). Compliance with government and firm's own policy, reverse logistics practices and firm environmental performance. International Journal of Productivity and Performance Management, 73(5), 1427-1478. https://doi.org/10.1108/IJPPM-09-2022-0463 Kamble, S. S., Gunasekaran, A., & Sharma, R. (2018). Analysis of the driving and dependence power of barriers to adopt industry 4.0 in Indian manufacturing industry. Computers in Industry, 101, 107-119. https://doi.org/10.1016/j.compind.2018.06.004 Kaviani, M. A., Tavana, M., Kumar, A., Michnik, J., Niknam, R., & de Campos, E. A. R. (2020). An integrated framework for evaluating the barriers to successful implementation of reverse logistics in the automotive industry. Journal of Cleaner Production, 272, 122714. https://doi.org/10.1016/j.jclepro.2020.122714 Kiani, M. , Andalib Ardakani, D. , Mirfakhredini, S. H. and Zare Ahmadabadi, H. (2023). An Analysis of the Barriers to the Implementation of the Circular Economy and Industry 4.0 in the Supply Chain: The Meta-Synthesis Approach and Fuzzy DANP. Journal of Industrial Management Perspective, 13(4), 9-45. [In Persian]. doi: 10.48308/jimp.13.4.9 Kiani, M., Andalib Ardakani, D. (2023). Finding causal relationship and ranking of industry 4.0 implementation challenges: a fuzzy DEMATEL-ANP approach. Soft Comput 27, 15479–15496. https://doi.org/10.1007/s00500-023-09053-4 Kim, S. T., Lee, H. H., & Hwang, T. (2020). Logistics integration in the supply chain: a resource dependence theory perspective. International Journal of Quality Innovation, 6(1), 5. https://doi.org/10.1186/s40887-020-00039-w Krstić, M., Agnusdei, G. P., Miglietta, P. P., Tadić, S., & Roso, V. J. (2022). Applicability of Industry 4.0 technologies in reverse logistics: A circular economy approach based on comprehensive distance-based ranking (COBRA) method. Sustainability, 14 (9), 5632. https://doi.org/10.3390/su14095632 Kumar, P., Singh, R. K., & Kumar, V. (2021). Managing supply chains for sustainable operations in the era of industry 4.0 and circular economy: Analysis of barriers. Resources, conservation and recycling, 164, 105215. https://doi.org/10.1016/j.resconrec.2020.105215 Le, S. T. (2023). Investigating the drivers of the reverse logistics implementation in reducing waste in Vietnam. Environmental Health Insights, 17, 11786302231211058. https://doi.org/10.1177/11786302231211058 Lee, S. H., Park, S. H., & Park, H. (2024). Assessing the feasibility of biorefineries for a sustainable citrus waste management in Korea. Molecules, 29(7), 1589. https://doi.org/10.3390/molecules29071589 Liao, T. Y. (2018). Reverse logistics network design for product recovery and remanufacturing. Applied Mathematical Modelling, 60, 145-163. https://doi.org/10.1016/j.apm.2018.03.003 Lin, K. M., & Lin, C. W. (2008, October). Cognition map of experiential marketing strategy for hot spring hotels in Taiwan using the DEMATEL method. In 2008 Fourth International Conference on Natural Computation (Vol. 1, pp. 438-442). IEEE. https://doi.org/10.1109/ICNC.2008.472 Lucia, C., Zhiwei, G., & Michele, N. (2023). Biometrics for Industry 4.0: a survey of recent applications. Journal of Ambient Intelligence and Humanized Computing, 14(8), 11239-11261. https://doi.org/10.1007/s12652-023-04632-7 Lv, Y., & Shang, Y. (2023). Investigation of industry 4.0 technologies mediating effect on the supply chain performance and supply chain management practices. Environmental Science and Pollution Research, 30(48), 106129-106144. https://doi.org/10.1007/s11356-023-29550-1 Ma, J., Zhu, L., & Guo, Y. (2021). Strategies and stability study for a triopoly game considering product recovery based on closed-loop supply chain. Operational Research, 21(4), 2261-2282. https://doi.org/10.1007/s12351-019-00509-w Mahmoudabadi, M., & Abedi, S. (2021). Identification and prioritization of effective factors in the reverse logistics supply chain of industrial wastewater in Gol Gohar Mining & Industrial Company. Quarterly Journal of Strategic Management in Industrial Systems, 16(57), 45–57. [In Persian]. https://doi.org/10.30495/imj.2021.686119 Malekpour Kalbadi Nejad, S., & Bagheri Nejad, J. (2023). A bi-objective location–inventory model for designing an integrated forward/reverse logistics network. Journal of Systems Engineering and Productivity, 3(1), 1–40. [In Persian]. 10.22034/SEP.2023.706141 Makaleng, M. S. M., & Hove-Sibanda, P. (2022). Reverse logistics strategies and their effect on the competitiveness of fast-moving consumer goods firms in South Africa. Logistics, 6(3), 56. https://doi.org/10.3390/logistics6030056 Mandal, A., & Deshmukh, S. G. (1994). Vendor selection using interpretive structural modelling (ISM). International journal of operations & production Mazroui Nasrabadi, E. , Sadeqi Arani, Z. , Fakhari, A. and Mohammad Kazemi, M. (2024). Ripple Effect in Supply Chain: Analysis of Intensifiers. Strategic Value Chain Management, 1(2), 79-92. [In Persian]. doi: 10.22075/svcm.2025.9428 Moktadir, M. A., Rahman, T., Ali, S. M., Nahar, N., & Paul, S. K. (2020). Examining barriers to reverse logistics practices in the leather footwear industry. Annals of Operations Research, 293(2), 715-746. https://doi.org/10.1007/s10479-019-03449-y Mutha, A., & Pokharel, S. (2009). Strategic network design for reverse logistics and remanufacturing using new and old product modules. Computers & Industrial Engineering, 56 (1), 334–346. https://doi.org/10.1016/j.cie.2008.06.006 Nirmal, D. D., Nageswara Reddy, K., Sohal, A. S., & Kumari, M. (2025). Development of a framework for adopting Industry 4.0 integrated sustainable supply chain practices: ISM–MICMAC approach. Annals of operations research, 348(3), 1387-1455. https://doi.org/10.1007/s10479-023-05427-x Patil, S. K., & Kant, R. (2014). A fuzzy AHP-TOPSIS framework for ranking the solutions of Knowledge Management adoption in Supply Chain to overcome its barriers. Expert systems with applications, 41(2), 679-693. https://doi.org/10.1016/j.eswa.2013.07.093 Pourmehdi, M., Paydar, M. M., Ghadimi, P., & Azadnia, A. H. C. (2022). Analysis and evaluation of challenges in the integration of Industry 4.0 and sustainable steel reverse logistics network. Computers & Industrial Engineering, 163, 107808. https://doi.org/10.1016/j.cie.2021.107808 Papanagnou, C. I. (2022). Measuring and eliminating the bullwhip in closed loop supply chains using control theory and Internet of Things. Annals of Operations Research, 310(1), 153-170. https://doi.org/10.1007/s10479-021-04136-7 Prajapati, H., Kant, R., & Shankar, R. (2023). Selection of strategy for reverse logistics implementation. Journal of Global Operations and Strategic Sourcing, 16(1), 1-23. https://doi.org/10.1108/JGOSS-04-2021-0034 Prakash, C., Barua, M. K., & Pandya, K. V. (2015). Barriers analysis for reverse logistics implementation in Indian electronics industry using fuzzy analytic hierarchy process. Procedia-Social and Behavioral Sciences, 189, 91-102. https://doi.org/10.1016/j.sbspro.2015.03.203 Rayhan, M. G. S., Nabi, M. N., Masum, M., Tushar, S. R., Fahim, M. R., & Rahman, M. M. (2025). Drivers and barriers to implementing industrial revolution 4.0 technologies: application of multi-method of ISM-MICMAC-DEMATEL. International Journal of Industrial Engineering and Operations Management. https://doi.org/10.1108/IJIEOM-01-2025-0016 Rahbaripour, K., Pakdelfard, M., Sattari Sarbangholi, H., & Valizadeh, N. (2026). Analysis of barriers to achieving Construction 4.0 using the interpretive structural modeling approach. System Engineering and Productivity, 6 (1), 1–38. [In Persian]. https://doi.org/10.22034/sep.2025.2068090.1374 Rahimi, H. J. Z., Azizi, A., & Najafi, S. E. (2023). Determining the level and analysis of the logistics system components based on Industry 4.0: Study of the logistics centers of Iran. Strategic Management in Industrial Systems, 18(63), 41–59. https://doi.org/10.30495/imj.2023.1973629.1812 Rahman, S., & Subramanian, N. (2012). Factors for implementing end-of-life computer recycling operations in reverse supply chains. International Journal of Production Economics, 140(1), 239-248. https://doi.org/10.1016/j.ijpe.2011.07.019 Rajabi, F., Haghighat Monfared, J., Etemadi, A., & Kouloubandi, A. (2023). Designing a strategic model for reverse logistics implementation in the home appliance industry. Journal of Green Management, 3(2), 1–18. [In Persian]. https://dorl.net/dor/20.1001.1.28210050.1402.3.2.1.5 Ramshe, M., Maleki, M. H., & Soltanian, M. (2023). A Framework for Identifying Key Drivers Affecting the Future of Auditing with a Focus on Industry 4.0 Technologies. Professional Auditing Research, 3(12), 8-3. https://doi.org/10.22034/jpar.2023.2003770.1176 Rezaie Moghadam, S., & Doosti, A. (2023). Desining a Multi-Objective Mathematical Model of Cumulative Production Planning in Reverse Supply Chain With Production Quality Function Under Uncertainty and Using MPSOGA Tran-Innovation Algorithm (High-Tech Industry Case Study). Engineering Management and Soft Computing, 8(2), 212-235. [In Persian]. https://doi.org/10.22091/jemsc.2020.6237.1141 Riaz, M., Farid, H. M. A., Aslam, M., Pamucar, D., & Bozanić, D. (2021). Novel approach for third-party reverse logistic provider selection process under linear Diophantine fuzzy prioritized aggregation operators. Symmetry, 13(7), 1152. https://doi.org/10.3390/sym13071152 Rokneddini, S. A. , Andalib Ardakani, D. , Zare Ahmadabadi, H. and Hosseini Bamkan, S. M. (2023). Modeling the Enablers of Industry 4.0 in the Implementation of a Sustainable Supply Chain with Fuzzy DEMATEL-ANP. Journal of Industrial Management Perspective, 13(1), 141-172. [In Persian]. doi: 10.48308/jimp.13.1.141 Sar, K., & Ghadimi, P. (2022). Designing reverse logistics network for a case study of home-care health medical device waste management: Implications for Industry 4.0 supply chains. IFAC-PapersOnLine, 55(10), 3148-3153. https://doi.org/10.1016/j.ifacol.2022.10.213 Shafipour, M., Forghani, M. A. and Sadeghi, Z. (2025). Measurement of reverse logistics in incomplete production process mode, variable demand and return rate, with different degrees of quality in order to increase value: A case study of Kerman Bahonar Copper Complex. Journal of Decisions and Operations Research, 10(2), 214-237. [In Persian]. doi: 10.22105/dmor.2025.484648.1884 Sun, X., Yu, H., & Solvang, W. D. (2022, January). System integration for smart reverse logistics management. In 2022 IEEE/SICE International Symposium on System Integration (SII) (pp. 821-826). IEEE. https://doi.org/10.1109/SII52469.2022.9708743 Szczupak, L. (2022). The impact of ‘industrial revolution 4.0’on logistics companies’ operations. https://www.um.edu.mt/library/oar/handle/123456789/104390 Tambare, P., Meshram, C., Lee, C. C., Ramteke, R. J., & Imoize, A. L. (2021). Performance measurement system and quality management in data-driven Industry 4.0: A review. Sensors, 22(1), 224. https://doi.org/10.3390/s22010224 Taqi, H. M. M., Nayeem, I., Bari, A. M., Anam, M. Z., & Ali, S. M. (2025). Addressing challenges to cloud manufacturing in industry 4.0 environment using an integrated approach: Implications for sustainability. Green Technologies and Sustainability, 100166. https://doi.org/10.1016/j.grets.2024.100166 Tjahjono, B., Esplugues, C., Ares, E., & Pelaez, G. (2017). What does industry 4.0 mean to supply chain?. Procedia manufacturing, 13, 1175-1182. https://doi.org/10.1016/j.promfg.2017.09.191 Tseng, M. L., Bui, T. D., Lan, S., & Lim, M. K. (2024). Data-driven on reverse logistic toward industrial 4.0: an approach in sustainable electronic businesses. International Journal of Logistics Research and Applications, 27(10), 1705-1741. https://doi.org/10.1080/13675567.2023.2175804 vahidian, V. & davoodi, S. M. R. (2018). Identification and Prioritizing the Solutions of Reverse Logistics Applying Using a Hybrid Approach of Fuzzy AHP and Fuzzy TOPSIS (Case Study: Isfahan’s Mobarakeh Steel Company). Iranian Journal of Trade Studies, 22(86), 125-164. [In Persian]. https://dor.isc.ac/dor/20.1001.1.17350794.1397.22.86.5.4 Yan, B., Dong, Q., Li, Q., Yang, L., & Amin, F. U. (2022). A study on the interaction between logistics industry and manufacturing industry from the perspective of integration field. PloS one, 17(3), e0264585. https://doi.org/10.1371/journal.pone.0264585 Yang, D., Duan, W., & Chang, Q. (2008, December). The Evaluation on the Agility of Reverse Logistics System based on BP Neural Network. In 2008 International Seminar on Business and Information Management (Vol. 2, pp. 229-232). IEEE. https://doi.org/10.1109/ISBIM.2008.90
| ||
|
آمار تعداد مشاهده مقاله: 207 تعداد دریافت فایل اصل مقاله: 50 |
||