تعداد نشریات | 21 |
تعداد شمارهها | 586 |
تعداد مقالات | 8,717 |
تعداد مشاهده مقاله | 66,558,672 |
تعداد دریافت فایل اصل مقاله | 7,097,481 |
تحلیل کمانش مکانیکی پوسته های استوانه ای جدار ضخیم مدرج تابعی با استفاده از تئوری تغییر شکل برشی مرتبه سوم | ||
مدل سازی در مهندسی | ||
مقاله 10، دوره 12، شماره 38، آذر 1393، صفحه 129-142 اصل مقاله (606.11 K) | ||
شناسه دیجیتال (DOI): 10.22075/jme.2017.1684 | ||
نویسندگان | ||
رضا اکبری آلاشتی* ؛ سید علی احمدی | ||
دانشگاه صنعتی بابل | ||
تاریخ دریافت: 09 بهمن 1395، تاریخ بازنگری: 27 شهریور 1396، تاریخ پذیرش: 09 بهمن 1395 | ||
چکیده | ||
استوانه ای جدار ضخیم با استفاده از تانسور مرتبه دوم پیولا-کیرشهف به دست آمده و از آنها در راستای ضخامت انتگرال گرفته می شود. معادلات حاکم به دست آمده، با استفاده از تئوری تغییر شکل برشی مرتبه سوم بر حسب مولفه های تغییر مکان توسعه داده شده و به صورت تحلیلی حل شده اند. فرض می شود که خواص ماده در راستای ضخامت مطابق قانون توزیع توانی بر حسب کسر حجمی مواد تشکیل دهنده به آرامی تغییر کند، در حالی که ضریب پواسون ماده ثابت در نظر گرفته شده است. همچنین معادلات کمانش به دست آمده، با استفاده از روش نیمه عددی کوادریچر تفاضلی گسسته سازی شده و به یک سیستم معادلات خطی همگن تبدیل می شوند. نتایج به دست آمده از روش تحلیلی با جوابهای حاصله از روش اجزا محدود به دست آمده از نرم افزار تجاری انسیس و نتایج ارائه شده در کار دیگر محققان مقایسه گردیده و صحت و درستی آنها بررسی شده است. اثر پارامتر های مختلف شامل شرایط تکیه گاهی، کسر حجمی مواد تشکیل دهنده، شرایط مختلف بارگذاری و نسبت های هندسی بر رفتار کمانشی پوسته استوانه ای جدار ضخیم ساخته شده از مواد مدرج تابعی مورد بررسی قرار گرفته است. | ||
کلیدواژهها | ||
کمانش مکانیکی؛ بار بحرانی؛ مواد مدرج تابعی؛ پوسته استوانهای جدار ضخیم؛ تغییر شکل برشی مرتبه سوم | ||
عنوان مقاله [English] | ||
MECHANICAL BUCKLING ANALYSIS OF FUNCTIONALLY GRADED THICK CYLINDRICAL SHELLS USING THIRD ORDER SHEAR DEFORMATION THEORY | ||
نویسندگان [English] | ||
Reza Akbari Alashti؛ Seysd Ali Ahmadi | ||
چکیده [English] | ||
In this paper, buckling analysis of thick cylindrical shells using the third order shear deformation theory is carried out. The governing differential stability equations are obtained based on the second Piola-Kirchhoff tensor and are integrated across the thickness of the shell. These equations are developed in terms of components of the displacement field using third order shear deformation theory and solved analytically. It is assumed that material properties of the shell vary smoothly through the thickness according to a power law distribution of the volume fraction of constituent materials, while the Poissonâs ratio is assumed to be constant. Also governing equations are discretized and reduced to a linear system of homogenous equations using differential quadrature method. The results obtained by the present work are compared with finite element solutions and results reported in the literature and the accuracy of this method is shown. Effects of various parameters including the boundary conditions, volume fraction, different loading conditions and geometric ratios on the buckling behavior of functionally graded thick cylindrical shells are investigated. | ||
کلیدواژهها [English] | ||
Mechanical buckling, critical load, Functionally Graded Material, thick cylindrical shell, third order shear deformation | ||
مراجع | ||
[1] Koizumi, M. (1993), “The concept of FGM. Ceramic Transactions”, Functionally Gradient Materials. 34, 3–10.
[2] Timoshenko, S.P., Gere, J.M. (1961), “Theory of Elastic Stability”. McGraw-Hill Book Company.
[3] Kardomateas, G.A. (1993), “Buckling of thick orthotropic cylindrical shell under external pressure”. J. Appl. Mechanics. Transactions of ASME, Vol. 60, pp. 195-202.
[4] Wang, X., Xiao, Jun., Zhang, Y.C. (2004), “A method for solving the buckling problem of thin-wall shell”. Int. J. pressure vessels and piping, Vol. 81, pp. 907-912.
[5] Voyiadjis, G.Z., Baluch, M.H. (1991), “A refined two-dimensional theory for thick cylindrical shell”. Int. J. Solids and structures, Vol. 27, No. 3, pp. 261-282.
[6] Simitses, G.J., Tabiei, A., Anastasiadis, J.S. (1993), “Buckling of moderately thick, laminated cylindrical shells under lateral pressure”. Compos. Eng, Vol. 3, No. 5, 409.
[7] Kardomateas, G.A. (1996), “Benchmark three-dimensional elasticity solution for the buckling of thick orthotropic cylindrical shells”. J. Appl. Mech. (ASME), Vol. 5, 569.
[8] Shahsiah, R., Eslami, M.R. (2003), “Thermal buckling of functionally graded cylindrical shell”, J. Thermal Stresses, Vol. 26, pp. 277–294.
[9] Wu, L.H., Jiang, Z.Q., Liu, J. (2005), “Thermoelastic stability of functionally graded cylindrical shells”. Compos. Struct, Vol. 70, pp. 60–68.
[10] Zhao, X., Liew, K.M. (2009), “Geometrically nonlinear analysis of functionally graded shells”. Int. J. Mechanical Sciences, Vol. 51, pp. 131-144.
[11] Zhao, X., Liew, K.M. (2010), “A mesh-free method for analysis of the thermal and mechanical buckling of functionally graded cylindrical shell panels”. Computational Mechanics, Vol. 45, pp. 297-310.
[12] Zhao, X., Yang, Y., Liew, K.M. (2007), “Geometrically nonlinear analysis of cylindrical shells using the element-free kp-Ritz method”. Engineering Analysis with Boundary Elements, Vol. 31, pp. 783-792.
[13] Huang, H., Han, Q. (2009), “Nonlinear buckling and postbuckling of heated functionally graded cylindrical shells under combined axial compression and radial pressure”. Int. J. Non-Linear Mechanics, Vol. 44, No. 2, pp. 209–18.
[14] Shen, H.S., Chen, T.Y. (1988), “A boundary layer theory for the buckling of thin cylindrical shells under external pressure”. Applied Mathematics and Mechanics, Vol. 9, pp. 557–71.
[15] Shen, H.S., Chen, T.Y. (1990), “A boundary layer theory for the buckling of thin cylindrical shells under axial compression”. In: Chien WZ, Fu ZZ, editors. Advances in Applied Mathematics and Mechanics in China, vol. 2. Beijing, China: International Academic Publishers, pp. 155–72.
[16] Shen, H.S., (2002). “Postbuckling analysis of axially-loaded functionally graded cylindrical shells in thermal environments”. Composites Science and Technology, Vol. 62, pp. 977–987.
[17] Reddy, J.N., Chin, C.D. (1998), “Thermoelastical Analysis of Functional Graded Cylinders and Plates”. J. Therm. Stresses, vol. 21, pp. 593–626.
[18] Ciarlet, P.G. (1988). “Mathematical Elasticity”. Vol. I, Three Dimensional Elasticity, North Holland, Amsterdam.
[19] Lai, W.M., Rubin, D., Krempl, E. (1996), “Introduction to Continuum Mechanics”. Third ed. Butterworth-Heinemann, Massachusetts.
[20] Reddy, J.N. (2004), “Mechanics of laminated composite plates and shells”. Theory and analysis. Boca Raton: CRC Press LLC;
[21] Bellman, R. E., Casti, J. (1971),“Differential quadraturd and long term Integration”. Journal of Mathematical Analysis and Applications, Vol. 34, No. 1, pp.235-238.
[22] shu, C. (2000) “Differential quadrature and its application in Engineering”, London, Springer-Verlag.
[23] Flugge, W. (1960), “Stresses in shells”. Springer-Verlag, Berlin, Heidelberg.
[24] Prabu, B., Rathinam, N., Srinivasan, R., Naarayen, K.A.S. (2009), “Finite element analysis of buckling of thin cylindrical shell subjected to uniform external pressure”. J. Solid Mechanics, Vol. 1, No. 2, pp. 148-158.
[25] Schiender, W., Brede, A. (2005), “Consistent equivalent geometric imperfections for the numerical buckling strength verification of cylindrical shells under uniform external pressure”. Thin-Walled Structures. Vol. 43, No. 2, pp. 175 - 188.
| ||
آمار تعداد مشاهده مقاله: 836 تعداد دریافت فایل اصل مقاله: 676 |