تعداد نشریات | 21 |
تعداد شمارهها | 583 |
تعداد مقالات | 8,685 |
تعداد مشاهده مقاله | 66,514,292 |
تعداد دریافت فایل اصل مقاله | 7,051,194 |
Embedded Crack Identification in Beam-Column Structures Under Axial Load Using an Efficient Static Data Based Indicator | ||
Journal of Rehabilitation in Civil Engineering | ||
مقاله 5، دوره 4، شماره 2 - شماره پیاپی 8، آبان 2016، صفحه 67-78 اصل مقاله (734.15 K) | ||
نوع مقاله: Regular Paper | ||
شناسه دیجیتال (DOI): 10.22075/jrce.2017.1842.1160 | ||
نویسندگان | ||
Omid Yazdanpanah1؛ Ramezan Ali Izadifard* 2؛ Mehrdad Abdi Moghadam1 | ||
1Ph.D. Student, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran | ||
2Assistant Professor, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran | ||
تاریخ دریافت: 13 دی 1395، تاریخ بازنگری: 26 بهمن 1395، تاریخ پذیرش: 26 بهمن 1395 | ||
چکیده | ||
A triangular model base on an investigation which has done by Sinha et al. has been developed for evaluating embedded crack localization in beam-column structures. In the assessment of this member’s behavior, the effects of displacement slope are necessary. In order to propose a crack localization method for embedded crack, an efficient static data based indicator is proposed for this crack in Euler-Bernoulli beam-columns under axial load effect. A finite element procedure is implemented for calculating the Static responses. Then, base on a central finite difference method, the slope and curvatures of horizontal displacements are evaluated. For this purpose, a simply supported beam-column and a two-span beam-column are considered and two different scenarios base on the damage of one element (single damage) and multiple elements (multiple damages) by considering the noise have been assessed. The numerical results have shown that this crack localization method has considerable accurate. | ||
کلیدواژهها | ||
Crack modeling؛ Embedded crack detection؛ Beam-column structure؛ Axial load؛ Static responses | ||
مراجع | ||
[1] Rytter, A. (1993), “Vibration Based Inspection of Civil Engineering Structures”. Ph.D. Thesis, Aalborg University, Denmark.
[2] Cawley, P., Adams, R.D. (1979), “The location of defects in structures from measurements of natural frequency”, The Journal of Strain Analysis for Engineering Design, Vol.14(2), pp.49-57.
[3] Koh, B.H., Dyke, S.J. (2007), “Structural health monitoring for flexible bridge structures using correlation and sensitivity of modal data”, Computers & Structures, Vol.85(3-4), pp.117-130.
[4] Messina, A., Jones, I.A., Williams, E.J. (1992), “Damage detection and localization using natural frequency changes”, Proceedings of the Conference on Identification in Engineering System, Cambridge, UK, Vol.1, pp.67-76.
[5] Doebling, S.W., Farrar, C.R., Prime, M.B., Shevits, D.W. (1996), “Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review”, Los Alamos National Laboratory, USA, Vol.1, pp.1–136.
[6] Abdel Wahab, M.M., De Roeck, G. (1999), “Damage detection in bridges using modal curvatures: application to a real damage scenario”, Journal of Sound and Vibration, Vol.226(2), pp.217–235.
[7] Rong-Song He. R-S., Hwang S-F. (2007). “Damage detection by a hybrid real-parameter genetic algorithm under the assistance of grey relation analysis”, Engineering Applications of Artificial Intelligence, Vol. 20 (7), pp. 980–992.
[8] Yang, Y., Liu, H., Mosalam, K.M., Huang, S. (2013). “An improved direct stiffness calculation method for damage detection of beam structures”. Structural Control and Health Monitoring, Vol.20 (5), pp.835-851.
[9] Nobahari, M., Seyedpoor, S.M. (2013), “An efficient method for structural damage localization based on the concepts of flexibility matrix and strain energy of a structure”, Structural Engineering and Mechanics, Vol.46(2), pp.231-244.
[10] Pandey, A.K., Biswas, M. (1994), “Damage detection in structures using changes in flexibility”, Journal of Sound and Vibration, Vol.169(1), pp.3–17.
[10] Shih, H.W., Thambiratnam, D.P., Chan, T.H.T. (2009), “Vibration based structural damage detection in flexural members using multi-criteria approach”, Journal of Sound and Vibration, Vol.323(3-5), pp.645–661.
[11] Seyedpoor, S.M., Montazer, M. (2013), “A damage identification method for truss structures using a flexibility-based damage probability index and differential evolution algorithm”, Inverse Problems in Science and Engineering, Vol.24(8), pp.1303-1322.
[12] Jaishi, B., Ren, W.X.. (2006). “Damage detection by finite element model updating using modal flexibility residual”. Journal of Sound and Vibration. Vol. 290, pp.369–387.
[13] Miguel, L.F.F., Miguel, L.F.F., Riera, J.D., Menezes, R.C.R. (2007). “Damage detection in truss structures using a flexibility based approach with noise influence consideration”. Structural Engineering and Mechanics, Vol.27, pp.625–638.
[14] Li, J., Wu, B., Zeng, Q.C., Lim, C.W. (2010). “A generalized flexibility matrix based approach for structural damage detection”. Journal of Sound and Vibration, Vol.329, pp.4583–4587.
[15] Wang, Z., Lin, R., Lim, M. (1997). “Structural damage detection using measured FRF data”. Computer Methods in Applied Mechanics and Engineering,Vol.147, pp.187–197.
[16] Huang, Q., Xu, Y.L., Li, J.C., Su, Z.Q., Liu, H.J. (2012). “Structural damage detection of controlled building structures using frequency response functions”. Journal of Sound and Vibration, Vol. 331, pp.3476–3492.
[17] Z. Wang, R. Lin, M. Lim (1997). “Structural damage detection using measured FRF data”. Computer Methods in Applied Mechanics and Engineering, Vol.147, pp.187–197.
[18] Spanos, P. D., Giuseppe F., Adolfo S., Massimiliano P. (2006). “Damage detection in Euler–Bernoulli beams via spatial wavelet analysis”, Structural Control and Health Monitoring, Vol.13(1), pp.472-487.
[19] Naderpour H., Fakharian P. (2016). “A synthesis of peak picking method and wavelet packet transform for structural modal identification”. KSCE Journal of Civil Engineering, Vol. 20 (7), pp. 2859–2867. doi:10.1007/s12205-016-0523-4.
[20] Bakhtiari-Nejad, F., A. Rahai, Esfandiari, A. (2005). “A structural damage detection method using static noisy data”. Engineering Structures, Vol.27, pp.1784-1793.
[21] Caddemi, S., Morassi, A. (2007). “Crack detection in elastic beams by static measurements”. International Journal of Solids and Structures, Vol.44, pp.5301–5315.
[22] Abdo, M.A.-B and Hori, M. (2002). “A numerical study of structural damage detection using changes in the rotation of mode shapes”. Journal of Sound and Vibration, Vol.251(2), pp.227–239.
[23] Seyedpoor, S.M., Yazdanpanah, O. (2013). “An efficient indicator for structural damage localization using the change of strain energy based on static noisy data”. Appl. Math. Modelling, Vol38(9-10), pp.2661-2672.
[24] Yazdanpanah O., Seyedpoor S.M., Akbarzadeh Bengar H. (2015). “A new damage detection indicator for beams based on mode shape data”. Structural Engineering and Mechanics, Vol. 53, pp.725-744.
[25] Sinha, J.K., Friswell, M.I., Edwards, S. (2002). “Simplified models for the location of cracks in beam structures using measured vibration data”. Journal of Sound and Vibration, Vol.251(1), pp.13–38.
[26] Yoo, C.H., Lee, S.C. (2011). “Stability of Structures: Principles and Applications”. Butterworth-Heinemann, Burlington, MA, USA, pp.171-179.
[27] MATLAB (R2010b), the language of technical computing (software), Math Works Inc. | ||
آمار تعداد مشاهده مقاله: 1,265 تعداد دریافت فایل اصل مقاله: 1,073 |