
Sobol sensitivity generalization for engineering and science applications | ||
مدل سازی در مهندسی | ||
Article 16, Volume 16, Issue 54, October 2018, Pages 217-226 PDF (1.27 M) | ||
Document Type: Civil Article | ||
DOI: 10.22075/jme.2017.12259.1221 | ||
Authors | ||
Sasan Motaghed* 1; azad yazdani2; ahmad nicknam3; mostafa khanzadi4 | ||
1Civil engineering department, engineering department, khatam Al annual university of technolgy | ||
2University of Kurdistan , Sanandaj · Department of Civil Engineering | ||
3iran university of science and texhnology | ||
4iran university of science and technology | ||
Receive Date: 09 October 2017, Revise Date: 18 November 2017, Accept Date: 11 December 2017 | ||
Abstract | ||
Uncertainty is the inseparable part of the engineering analysis. These uncertainties have different Distributions. Sobol decomposition method is one of the most well-known methods of sensitivity analysis. Sobol decomposition as a robust sensitivity analysis method can only be used for uniform distribution. In the present paper, we generalize Sobol sensitivity method for all continuous and discrete distributions. Hence it can be used for wide Varity models in engineering and science of different distributions. The capability of the generalized method for precise numerical values presentation, the results of the sensitivity analysis of the Tehran seismic hazard is given. Due to the variability of materials and earthquakes, Structural and geosciences are full of uncertainties. Calculating the role of the uncertainty of each parameter in the overall uncertainty can be to optimize the efforts and costs necessary for outputs precision, so, it is possible to provide a precise values of sensitivities. The results are satisfactory. | ||
Keywords | ||
input model; staistical distribution; Variance; Uncertainty; hazard analysis | ||
References | ||
[1] Saltelli, A., & Bolado, R. (1998). An alternative way to compute Fourier amplitude sensitivity test (FAST). Computational Statistics & Data Analysis, Vol. 26, No.4,pp. 445-460, [2] Saltelli, A. N. D. R. E. A., & Funtowicz, S. (2013). When all models are wrong. Issues in Science and Technology, 30-2. [3] Saltelli, A., Ratto, M., Tarantola, S., & Campolongo, F. (2012). Update 1 of: sensitivity analysis for chemical models. Chemical reviews, 112(5), PR1-PR21. [4] Sobol, I. M. (1993). Sensitivity analysis or nonlinear mathematical models. Math Model Comput Exp, 1(4), 407-414. [5] Sobol, I. Y. M. (1990). On sensitivity estimation for nonlinear mathematical models. Matematicheskoe Modelirovanie, 2(1), 112-118. [6] Nossent, J., Elsen, P., & Bauwens, W. (2011). Sobol’sensitivity analysis of a complex environmental model. Environmental Modeling & Software, Vol. 26, No.12,pp. 1515-1525, [7] Iooss, B., & Lemaître, P. (2015). A review on global sensitivity analysis methods. In Uncertainty Management in Simulation-Optimization of Complex Systems (pp. 101-122). Springer US [8] Wu, Z., Wang, D., Okolo, P., Hu, F., & Zhang, W. (2016). Global sensitivity analysis using a Gaussian Radial Basis Function metamodel. Reliability Engineering & System Safety, 154, 171-179. [9] Sabetta, F., Lucantoni, A., Bungum, H., & Bommer, J. J. (2005). Sensitivity of PSHA results to ground motion prediction relations and logic-tree weights. Soil dynamics and earthquake engineering, 25(4), 317-329. [10] Arwade, S. R., Moradi, M., & Louhghalam, A. (2010). Variance decomposition and global sensitivity for structural systems. Engineering Structures, 32(1), 1-10. [11] Eisner, L., Duncan, P. M., Heigl, W. M., & Keller, W. R. (2009). Uncertainties in passive seismic monitoring. The Leading Edge, 28(6), 648-655. [12] حسین بخشی؛ مهراله رخشانی مهر؛ مسعود نوروزی، تحلیل خطر لرزه ای و تهیه نقشه های هم شتاب شهرستان نیشابور، مجله مدلسازی در مهندسی، دوره 15، شماره 50، پاییز 1396، صفحه 13-13 [13] Aldama-Bustos, G., Bommer, J. J., Fenton, C. H., & Stafford, P. J. (2009). Probabilistic seismic hazard analysis for rock sites in the cities of Abu Dhabi, Dubai and Ra's Al Khaymah, United Arab Emirates. Georisk, 3(1), 1-29. [14] Frankel, A. D., Mueller, C., Barnhard, T., Perkins, D., Leyendecker, E., Dickman, N., ... & Hopper, M. (1996). National seismic-hazard maps: documentation June 1996 (pp. 96-532). US Geological Survey. [15] مهرالله رخشانی مهر ؛ محسن راشکی؛ محمود میری؛ مهدی اژدری مقدم ارزیابی قابلیت اطمینان قابهای خمشی فلزی با استفاده از روش شبیهسازی وزنی و درونیابی تابع پایه شعاعی، مجله مدلسازی در مهندسی، دوره 14، شماره 47، زمستان 1395، صفحه 21-32 [16] محمد مهدی خطیبی ؛ محمد رضا آشوری؛ علیرضا آلبویه میزانسازی دقیق شکل مودهای آنالیز مودال محیطی با استفاده از آنالیز حساسیت، مجله مدلسازی در مهندسی، دوره 5، شماره 19، زمستان 1388، صفحه 1-10 [17] Atkinson, G. M., & Goda, K. (2011). Effects of seismicity models and new ground-motion prediction equations on seismic hazard assessment for four Canadian cities. Bulletin of the Seismological Society of America, Vol. 101, No.1, pp. 176-189, [18] Yazdani, A., Nicknam, A., Khanzadi, M., & Motaghed, S. (2015). An artificial statistical method to estimate seismicity parameter from incomplete earthquake catalogs A case study in metropolitan Tehran, Iran. Scientia Iranica. Transaction A, Civil Engineering, 22(2), 400. [19] Teraphan Ornthammarath, John Douglas, Ragnar Sigbjörnsson, Carlo Lai. Assessment of ground motion variability and its effects on seismic hazard analysis: A case study for Iceland. Bulletin of Earthquake Engineering, Springer Verlag, 2011, 9 (4), pp.931-953. [20] Ameri, G., Hollender, F., Perron, V., & Martin, C. (2017). Site-specific partially nonergodic PSHA for a hard-rock critical site in southern France: adjustment of ground motion prediction equations and sensitivity analysis. Bulletin of Earthquake Engineering, 1-23 [21] Molkenthin, C., Scherbaum, F., Griewank, A., Leovey, H., Kucherenko, S., & Cotton, F. (2017). Derivative‐Based Global Sensitivity Analysis: Upper Bounding of Sensitivities in Seismic‐Hazard Assessment Using Automatic Differentiation. Bulletin of the Seismological Society of America. [22] Bommer, J. J., & Crowley, H. (2017). The Purpose and Definition of the Minimum Magnitude Limit in PSHA Calculations. Seismological Research Letters. [23] Moradi, M., Delavar, M. R., & Moshiri, B. (2013, October). Sensitivity analysis of ordered weighted averaging operator in earthquake vulnerability assessment. In Proceedings of SMPR 2013 Conference (pp. 5-8). [24] Mahmoudi, M., Shayanfar, M., Barkhordari, M. A., & Jahani, E. (2016). New fuzzy method in choosing Ground Motion Prediction Equation (GMPE) in probabilistic seismic hazard analysis. Earthquakes and Structures, 10(2), 389-408. [25] Amiri, G. G., Motamed, R., & Es-Haghi, H. R. (2003). Seismic hazard assessment of metropolitan Tehran, Iran. Journal of Earthquake Engineering, 7(03), 347-372.
| ||
Statistics Article View: 3,573 PDF Download: 1,327 |