تعداد نشریات | 21 |
تعداد شمارهها | 583 |
تعداد مقالات | 8,685 |
تعداد مشاهده مقاله | 66,514,149 |
تعداد دریافت فایل اصل مقاله | 7,051,082 |
ارزیابی خصوصیات شیمیایی، فیزیکی و رفتار خستگی قیرهای اصلاح شده با نانوسیلیکا و پلییورتان سنتز شده | ||
مهندسی زیر ساخت های حمل و نقل | ||
مقاله 3، دوره 4، شماره 3 - شماره پیاپی 15، آذر 1397، صفحه 33-44 اصل مقاله (937.88 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/jtie.2018.15989.1340 | ||
نویسندگان | ||
مانا معتمدی1؛ غلامعلی شفابخش* 2؛ محمد آزادی3 | ||
1دانشجوی دکتری راه و ترابری، دانشکده مهندسی عمران، دانشگاه سمنان | ||
2استاد، دانشکده مهندسی عمران، دانشگاه سمنان | ||
3استادیار، دانشکده مکانیک، دانشگاه سمنان، سمنان، ایران | ||
تاریخ دریافت: 01 مهر 1397، تاریخ بازنگری: 17 مهر 1397، تاریخ پذیرش: 01 آبان 1397 | ||
چکیده | ||
روسازی آسفالتی راهها متشکل از قیر، سنگدانه و فیلر میباشد. قیر نقش مهمی در خصوصیات مخلوطهای آسفالتی داشته و از این جهت شناسایی رفتار آن حائز اهمیت است. بتن آسفالتی همچنان پرکاربردترین مصالح در ساخت جادهها میباشد. خرابی خستگی از متداولترین خرابی در راهها بوده و سالانه هزینه زیادی صرف تعمیر و نگهداری راهها میشود. اصلاح قیر یکی از روشهای مهم جهت افزایش مقاومت روسازی در برابر خرابی میباشد. در این پژوهش، نانوسیلیکا و پلییورتان سنتز شده با مقادیر 3، 5 و 7 درصد وزنی قیر استفاده شدند. بهدلیل عدم پایداری ترموپلاستیک پلییورتان در قیر، از پلییورتان سنتز شده استفاده شد. برای سنتز پلییورتان، از ترکیب پلیال و ایزوسیانات استفاده شد. برای بررسی خستگی از تست جاروب زمان استفاده شد. نتایج نشان میدهد که پلییورتان سنتز شده و نانوسیلیکا عمر خستگی را بهبود بخشیدند. تأثیر پلییورتان سنتز شده بر عمر خستگی به مراتب بیشتر از نانوسیلیکا بود. مقدار افزایش عمر خستگی برای نانوسیلیکا و پلییورتان سنتز شده در کرنش کم 7/3 و 5/4 برابر بود. نتایج تست شیمیایی طیفسنجی تبدیل فوریه مادون قرمز و تستهای فیزیکی نشان میدهد که تغییرات فیزیکی ایجاد شده در قیر برای پیشبینی خستگی به تنهایی قابل اعتماد نیست. تغییرات شیمیایی و ایجاد پیوندهای مختلف در رفتار خستگی تأثیرگذار میباشند. | ||
کلیدواژهها | ||
رفتار خستگی؛ پلییورتان سنتز شده؛ نانوسیلیکا؛ تست جاروب زمان؛ طیفسنجی تبدیل فوریه مادون قرمز | ||
عنوان مقاله [English] | ||
Evaluation of Chemical, Physical and Fatigue Properties of Modified Asphalt Binder with Nanosilica and Synthesized Polyurethane | ||
نویسندگان [English] | ||
mana motamedi1؛ gholamali shafabakhsh2؛ mohammad azadi3 | ||
1Ph.D. student, Faculty of Civil Engineering, Semnan University | ||
2Professor, Faculty of Civil Engineering, Semnan University, Semnan, I. R. Iran. | ||
3Assistant Professor, Faculty of Mechanical Engineering, Semnan University, Semnan, Iran | ||
چکیده [English] | ||
Asphalt pavement roads are composed of bitumen, aggregates and filler. Asphalt binder plays an important role in the properties of asphalt mixtures, and it is therefore important to identify its behavior. Asphalt concrete is still the most used material in the construction of roads. Fatigue failure is one of the most common failures in roads, and repairing such failures is very costly. Bitumen correction is one of the important methods to increase the strength of the pavement against failure. In this research, nanosilica and synthesized polyurethane with 3, 5 and 7 asphalt binder percentage were used. Due to the instability of thermoplastic polyurethane in asphalt binder, synthesized polyurethane was used. Polyurethane was synthesized by using a combination of polyol and isocyanate. To test the fatigue, a time sweep test was used. Results showed that synthesized polyurethane and nanosilica have improved the fatigue life. The effect of synthesized polyurethane on fatigue life was much greater than that of nanosilica. The fatigue life was increased 3.7 and 4.5 times for nanosilica and synthesized polyurethane in low strain, respectively. Results of the chemical test of Fourier-Transform Infrared Spectroscopy and physical tests showed that the physical changes which were made in the bitumen are not reliable for prediction of fatigue. In fact, changes in the chemical composition and creation of various bonds are influential on the fatigue behavior. | ||
کلیدواژهها [English] | ||
Fatigue behavior, Synthesized polyurethane, Nanosilica, Time sweep test, Fourier-transform infrared spectroscopy | ||
مراجع | ||
Anderson, A., Christensen, D. W., Bahia, H. U., Donger, R., Sharma, M. G. and Antle, C. E. 1994. “Binder characterization and evaluation. Volume 3: Physical characterization”. Retrieved from National Research Council, Washington, DC.
Arshad, A. K., Samsudin, M. S., Masri, K. A., Karim, M. R. and Abdul Halim, A. G. 2017. “Multiple stress creep and recovery of nanosilica modified asphalt binder”. MATEC Web of Conferences, 103, pp. 1-8. doi:10.1051/matecconf/201710309005.
ASTM-D2872. 2012. “Standard test method for effect of heat and air on a moving film of asphalt (rolling thin-film oven test)”. ASTM International, West Conshohocken.
Bahia, H. 2010. “NCHRP09-45, test methods and specification criteria for mineral filler used in HMA”. Retrieved from University of Wisconsin, Madison.
Bahia, H., Hanson, D. I., Zeng, M., Zhai, H., Khatri, M. A. and Anderson, M. A. 2001. “Characterization of modified asphalt binders in superpave mix design”. NCHRP Report 459, Retrieved from Washington, DC.
Brule, B. 1997. “Polymer-modified asphalt cements used in the road construction industry: Basic principles”. Transport. Res. Record: J. Transport. Res. Board, 1535: 48-53
Carrera, V., Partal, P., García-Morales, M., Gallegos, C. and Pérez-Lepe, A. 2010. “Effect of processing on the rheological properties of poly-urethane/urea bituminous products”. Fuel Process. Technol., 91(9): 1139-1145.
Cuadri, A. A., García-Morales, M., Navarro, F. J. and Partal, P. 2013. “Isocyanate-functionalized castor oil as a novel bitumen modifier”. Chem. Eng. Sci., 97, 320-327.
ASTM-D6521-18, S. 2018. “Standard practice for accelerated aging of asphalt binder using a pressurized aging vessel (PAV)”. ASTM International, West Conshohocken, PA.
Enieb, M. and Diab, A. 2017. “Characteristics of asphalt binder and mixture containing nanosilica”. Int. J. Pavement Res. Technol., 10(2): 148-157.
Fang, C., Yu, R., Liu, S. and Li, Y. 2013. “Nanomaterials applied in asphalt modification: A review”. J. Mater. Sci. Technol., 29(7): 589-594.
Izquierdo, M. A., Navarro, F. J., Martínez-Boza, F. J. and Gallegos, C. 2012. “Bituminous polyurethane foams for building applications: Influence of bitumen hardness”. Constr. Build. Mater., 30: 706-713.
Izquierdo, M. A., Navarro, F. J., Martínez-Boza, F. J. and Gallegos, C. 2013. “Effects of MDI–PPG molecular weight on the thermorheological behaviour of MDI–isocyanate based bituminous foams”. J. Ind. Eng. Chem., 19(2): 704-711.
Izquierdo, M. A., García-Morales, M., Martínez-Boza, F. J. and Navarro, F. J. 2014. “Thermo-mechanical properties and microstructural considerations of MDI isocyanate-based bituminous foams”. Mater. Chem. Phys., 146(3): 261-268.
Johnson, C. M. 2010. “Estimating asphalt binder fatigue resistance using an accelerated test method”. PhD Thesis, University of Wisconsin, Madison.
Leiva-Villacorta, F. and Vargas-Nordcbeck, A. 2017. “Optimum content of nano-silica to ensure proper performance of an asphalt binder”. Road Mater. Pavement Design, doi:10.1080/14680629.2017.1385510.
Moghadas Nejad, F., Nazari, H., Naderi, K., Karimiyan Khosroshahi, F. and Hatefi Oskuei, M. 2017. “Thermal and rheological properties of nanoparticle modified asphalt binder at low and intermediate temperature range”. Petrol. Sci. Technol., 35(7): 641-646.
Navarro, F., Partal, P., Garciamorales, M., Martinezboza, F. and Gallegos, C. 2007. “Bitumen modification with a low-molecular-weight reactive isocyanate-terminated polymer”. Fuel, 86(15), 2291-2299.
Nazari, H., Naderi, K. and Moghadas Nejad, F. 2018. “Improving aging resistance and fatigue performance of asphalt binders using inorganic nanoparticles”. Constr. Build. Mater., 170: 591-602.
Polacco, G., Stastna, J., Biondi, D., Antonelli, F., Vlachovicova, Z. and Zanzotto, L. 2004. “Rheology of asphalts modified with glycidylmethacrylate functionalized polymers”. J. Colloid Interf. Sci, 280(2): 366-373.
Safaei, F., Castorena, C. and Kim, Y. R. 2016. “Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling”. Mech. Time-Depend. Mater., 20(3): 299-323.
Saltan, M., Terzi, S. and Karahancer, S. 2017. “Examination of hot mix asphalt and binder performance modified with nano silica”. Constr. Build. Mater., 156: 976-984.
Zhu, J., Birgisson, B. and Kringos, N. 2014. “Polymer modification of bitumen: Advances and challenges”. Eur. Polym. J., 54; 18-38.
| ||
آمار تعداد مشاهده مقاله: 984 تعداد دریافت فایل اصل مقاله: 3,302 |