تعداد نشریات | 21 |
تعداد شمارهها | 593 |
تعداد مقالات | 8,812 |
تعداد مشاهده مقاله | 66,763,937 |
تعداد دریافت فایل اصل مقاله | 7,327,105 |
مدلسازی رسانندگی حرارتی نانوسیالهای حاوی نانولولههای کربنی بر پایه اتیلن گلیکول با استفاده از شبکه عصبی پرسپترون چند لایهای | ||
مدل سازی در مهندسی | ||
مقاله 1، دوره 17، شماره 59، دی 1398، صفحه 1-9 اصل مقاله (1.11 M) | ||
نوع مقاله: مقاله مکانیک | ||
شناسه دیجیتال (DOI): 10.22075/jme.2019.16994.1675 | ||
نویسندگان | ||
آمنه آهنگرپور* ؛ منصور فربد | ||
گروه فیزیک، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، جمهوری اسلامی ایران. | ||
تاریخ دریافت: 30 دی 1397، تاریخ بازنگری: 28 اسفند 1397، تاریخ پذیرش: 05 تیر 1398 | ||
چکیده | ||
در تحقیق قبلی انجام شده ]1[، نانوسیالها با استفاده از نانولولههای کربنی اولیه و نانولولههای کربنی عاملدار با زمانهای رفلاکس یک، دو و چهار ساعت و غلظتهای 1/0، 25/0 و 5/0 درصد حجمی تهیه و رسانندگی حرارتی آنها در دماهای 20، 30، 40 و 50 درجهی سانتیگراد اندازهگیری شد. به دلیل پرهزینه و زمانبر بودن کارهای تجربی، معمولاً امکان بررسی گسترده آنها وجود ندارد. یکی از بهترین روشها برای بررسی کمهزینه و گستردهی کارهای تجربی، استفاده از روشهای مدلسازی است. از جمله این روشها، روش شبکههای عصبی مصنوعی است که از مدلهای اولیهی فرآیندهای حسی مغز الهام می گیرد. با استفاده از شبکههای عصبی مصنوعی میتوان آزمایشگاهی مجازی طراحی و نتایج را برای شرایط مشابه که به صورت تجربی اندازهگیری نشدهاند، پیشبینی نمود. در این تحقیق، جهت طراحی آزمایشگاه مجازی و مدلسازی دادههای تجربی شامل نتایج اندازهگیری رسانندگی حرارتی نانوسیالهای حاوی نانولولههای کربنی بر پایه اتیلن گلیکول از شبکه عصبی پرسپترون چند لایهای(MLP) استفاده گردید. جهت رسیدن به حداقل خطا، شبکههای عصبی با تعداد لایههای مخفی متفاوت (1، 2 و 3 لایه) و تعداد نرونهای متفاوت در هر لایه (2، 3، 4، 5، 6، 10 و 15 نرون) مورد برررسی قرار گرفتند. کمترین درصد خطا که 5/6 % بود برای شبکه عصبی شامل دو لایه مخفی که لایه اول دارای 3 نرون و لایه دوم دارای 2 نرون بود، بدست آمد. سپس از این شبکه جهت پیشبینی نتایج در شرایط نزدیک به شرایط آزمایش، استفاده شد و مشاهده گردید که نتایج پیشبینی شده با نتایج تجربی بدست آمده، سازگاری دارند. | ||
کلیدواژهها | ||
نانولولههای کربنی؛ نانوسیالها؛ رسانندگی حرارتی؛ پرسپترون چند لایهای | ||
عنوان مقاله [English] | ||
Modeling of thermal conductivity of ethylene glycol nanofluids containing carbon nanotubes by Multilayer Perceptron neural network | ||
نویسندگان [English] | ||
Ameneh Ahangarpour؛ Mansoor Farbod | ||
Departmet of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, I. R. Iran | ||
چکیده [English] | ||
In our previous work [1], pristine and functionalized carbon nanotubes with 1, 2 and 4 hours refluxing times and concentrations of 0.1, 0.25 and 0.5 Vol% were used to prepare nanofluids and their thermal conductivity was measured at 20, 30, 40 and 50 °C. Lots of empirical works cannot be done because they are time consuming and costly. One of the best methods for investigation of low cost and wide range of empirical works is using the modeling methods. The artificial neural network model is a method which replicates the initial sensory processes of the brain. It is possible to design a virtual laboratory using artificial neural networks to predict the results for the same conditions even not measured experimentally. In this work, a multilayer perceptron (MLP) neural network was used to design a virtual lab and modeling the experimental data including the thermal conductivity of ethylene glycol nanofluids containing CNTs. In order to achieve a minimum error, neural networks with different hidden layers (1, 2 and 3 layers) and different number of neurons in each layer (2, 3, 4, 5, 6, 10 and 15 neurons) were studied. The minimum error of 6.5% was obtained for the neural network with two hidden layers by 3 neurons in the first layer and 2 neurons in the second one. This network was used to predict the results in the conditions which were closed to experimental conditions and it was observed that the predicted results were in good agreement with the experimental results. | ||
کلیدواژهها [English] | ||
Carbon nanotubes, Nanofluids, Thermal conductivity, Artificial Neural Network, Multilayer Perceptron | ||
مراجع | ||
[1] A. Ahangarpour, and M. Farbod, "The noble effect of aging on the thermal conductivity of modified CNTs-ethylene glycol nanofluids", Physics and Chemistry of Liquids, Vol. 56, N0. 1, 2018, pp. 9–15. [2] A. Krogh, "What are artificial neural networks", Nature Biothechnology, Vol. 26, No. 2, February 2008, pp. 195–197. [3] N.K. Kasabov, Foundations of neural networks, Fuzzy Systems and knowledge Engineering, 2th ed., The MIT press, Cambridge, Massachusetts, London, England, 1998. ]4[ محمود البرزی، آشنایی با شبکههای عصبی، مؤسسهی انتشارات علمی دانشگاه صنعتی شریف، تهران، 1389. [5] S. Berlemont, N. Burrus, D. Lesage, F. Maes, J.B. Mouret, B. Perrot, M. Rey, N. Tisserand, and A. Wang, "Neural Networks: Multi-Layer Perceptron and Hopfield Network", Laboratoire de Recherche et Développement de l’Epita (LRDE), France, 2001. [6] M. Hojjat, S.Gh. Etemad, R. Bagheri and J. Thibault, "Thermal conductivity of non-Newtonian nanofluids: Experimental data and modeling using neural network", International Journal of Heat and Mass Transfer, Vol. 54, 2011, pp. 1017–1023. [7] M.M. Papari, F. Yousefi, J. Moghadasi, H. Karimi and A. Campo, "Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks", International Journal of Thermal Sciences, Vol. 50, No. 1, 2011, pp. 44–52. [8] G.A. Longon, C. Zilio, E. Ceseracciu and M. Reggiani, "Application of Artificial Neural Network (ANN) for the prediction of thermal conductivity of oxide–water nanofluids", Nano Energy, Vol. 1, No. 2, 2012, pp. 290–296. [9] F. Yousefi, H. Karimi and M.M. Papari, "Modeling viscosity of nanofluids using diffusional neural networks", Journal of Molecular Liquids, Vol. 175, 2012, pp. 85–90. [10] M. Tajik Jamal-Abadi and A. H. Zamzamian, "Optimization of Thermal Conductivity of Al2O3 Nanofluid by Using ANN and GRG Methods", International Journal of Nanoscience and Nanotechnology, Vol. 9, No. 4, 2013, pp. 177–184. [11] S. Atashrouz, G. Pazuki and Y. Alimoradi, "Estimation of the viscosity of nine nanofluids using a hybrid GMDH-type neural network system", Fluid Phase Equilibria, Vol. 372, 2014, pp. 43–48. [12] E. Ahmadlo and S. Azizi, "Prediction of thermal conductivity of various nanofluids using artificial neural network", International Communications in Heat and Mass Transfer, Vol. 74, 2016, pp. 69–75. [13] M. Hemmat Esfe, K. Motahari, E. Sanatizadeh, M. Afranda, H. Rostamian and M.R. Hassani Ahangar, "Estimation of thermal conductivity of CNTs-water in low temperature by artificinal neural network and correlation", International Communications in Heat and Mass Transfer, Vol. 76, 2016, pp. 376–381. [14] M. Vafaei, M. Afrand, N. Sina, R. Kalbasi, F. Sourani and H. Teimouri, "Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks", Physica E: Low-dimensional Systems and Nanostructures, Vol. 85, 2017, pp. 90–96. [15] M. Hemmat Esfe, M. Bahiraei, M.H. Hajmohammad and M. Afrand, "Rheological characteristics of MgO/oil nanolubricants: Experimental study and neural network modeling", International Communications in Heat and Mass Transfer, Vol. 86, 2017, pp. 245–252. [16] A. Alirezaie, S. Saedodin, M. Hemmat Esfe and S.H. Rostamian, "Investigation of rheological behavior of MWCNT (COOHfunctionalized)/MgO - Engine oil hybrid nanofluids and modelling the results with artificial neural networks", Journal of Molecular Liquids, Vol. 241, 2017, pp. 173–181. [17] M. Hemmat Esfe, H. Rostamian, M.R. Sarlak, M. Rejvani and A. Alirezaie, "Rheological behavior characteristics of TiO2-MWCNT/10w40 hybrid nano-oil affected by temperature, concentration and shear rate: an experimental study and a neural network simulating", Physica E: Low-dimensional Systems and Nanostructures, Vol. 94, 2017, pp. 231–240. ]18[ محمد همت اسفه و سیف الله سعدالدین، "بررسی تجربی و آزمایشگاهی تاثیر قطر نانوذرات و دما بر ضریب هدایت حرارتی نانوسیال آب/آهن در کسرهای حجمی پایین و ارائه مدل جدید بر مبنای مقادیر تجربی حاصله"، نشریه مدلسازی در مهندسی، دوره 13، شماره 42 ، پاییز 1394، صفحه 27-42. ]19[ محمد همت اسفه ، مجتبی بیگلری ، سیف الله سعدالدین و سید هادی رستمیان، "ارزیابی تجربی خواص ترموفیزیکی، انتقال حرارت جابجایی و افت فشار در نانوسیال آب- نانولوله کربنی چند جداره عامل دار شده"، نشریه مدلسازی در مهندسی، دوره 15، شماره 48 ، بهار 1396، صفحه 73-84. ]20[ مسعود افرند و محمد همت اسفه، "مدلسازی با استفاده از شبکه عصبی مصنوعی جهت پیش بینی هدایت حرارتی نانوسیال نانولوله کربنی چند جداره عامل دار – آب و ارائه رابطه تجربی جدید"، نشریه مدلسازی در مهندسی، دوره 16، شماره 53، تابستان 1397، صفحه 67-73. [21] M. Farbod, A. Ahangarpour and S.Gh. Etemad, "Stability and thermal conductivity of water-based carbon nanotube nanofluids", Particuology, Vol. 22, 2015, pp. 59–65.
| ||
آمار تعداد مشاهده مقاله: 504 تعداد دریافت فایل اصل مقاله: 351 |