تعداد نشریات | 21 |
تعداد شمارهها | 603 |
تعداد مقالات | 8,939 |
تعداد مشاهده مقاله | 66,888,802 |
تعداد دریافت فایل اصل مقاله | 7,488,104 |
Investigation of the Effect of Noise on Tracking Objects using Deep Learning | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 11، Special Issue، بهمن 2020، صفحه 53-61 اصل مقاله (1.01 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2020.4500 | ||
نویسنده | ||
Mohammad Eshaghian* | ||
Department of Computer Engineering and Information Technology , Payame Noor University (PNU), P.O. Box, 19395-3697, Tehran, Iran. | ||
تاریخ دریافت: 22 دی 1398، تاریخ بازنگری: 15 اردیبهشت 1399، تاریخ پذیرش: 27 اردیبهشت 1399 | ||
چکیده | ||
Nowadays, tracking objects has become one of the basic needs of security systems. Deep learning based methods has dramatically improved results in tracking objects. Meanwhile, the quality of the videos captured by camera is effective on the accuracy of the trackers. All images captured by camera inevitably contain noise. The noise is usually created due to various reasons such as the underlying media, weather condition, and camera vibrations in the wind and so on. This paper deals with the issue. In this paper, tracking objects is performed by Yolu 3 architecture in deep learning. Cycle spinning method is also employed to eliminate noise. | ||
کلیدواژهها | ||
Noise؛ Object Tracking؛ Deep learning؛ Wavelet transform؛ Cycle spinning | ||
آمار تعداد مشاهده مقاله: 16,130 تعداد دریافت فایل اصل مقاله: 768 |