تعداد نشریات | 21 |
تعداد شمارهها | 590 |
تعداد مقالات | 8,768 |
تعداد مشاهده مقاله | 66,666,052 |
تعداد دریافت فایل اصل مقاله | 7,234,294 |
ارزیابی عملکرد مدل های شبکه عصبی مصنوعی، نروفازی و رگرسیون چند متغیره در پیش بینی مقاومت فشاری بتن به کمک روش بارنقطه ای | ||
مدل سازی در مهندسی | ||
مقاله 8، دوره 18، شماره 62، آبان 1399، صفحه 99-113 اصل مقاله (2.13 M) | ||
نوع مقاله: مقاله عمران | ||
شناسه دیجیتال (DOI): 10.22075/jme.2020.19326.1826 | ||
نویسندگان | ||
میثم عفتی* 1؛ رحمت مدندوست2؛ زینب فلاح زرجو بازکیایی3 | ||
1استادیار، دانشکده فنی، دانشگاه گیلان | ||
2دانشیار، دانشکده فنی، دانشگاه گیلان | ||
3دانشجوی دکتری، دانشگاه گیلان | ||
تاریخ دریافت: 01 دی 1398، تاریخ بازنگری: 17 اردیبهشت 1399، تاریخ پذیرش: 24 اردیبهشت 1399 | ||
چکیده | ||
امروزه تعیین مقاومت بتن درجا مورد توجه میباشد. ضرورت انجام آزمایشات درجا را میتوان در عاملهای مختلفی چون تغییر یا توسعه سازه، بررسی کیفیت، ارزیابی مقاومت و عملکرد بتن جستجو نمود. در این پژوهش عملکرد مدلهای شبکه عصبی مصنوعی، نروفازی تطبیقی و رگرسیون چندمتغیره با هدف سنجش مقاومت فشاری بتن با روش بارنقطهای مورد مطالعه قرار میگیرد. همچنین رابطهای محاسباتی بر اساس روش رگرسیون چندمتغیره برای پیشبینی مقاومت فشاری بتن با روش بارنقطهای ارائه میگردد. نتیجهها نشاندهنده مناسب بودن مدلهای شبکه عصبی، نروفازی و رگرسیون در پیشبینی مقاومت بتن به روش بارنقطهای میباشد. ضریب همبستگی برای مدل شبکه عصبی، نروفازی و رگرسیون غیر خطی به ترتیب 9412/0، 8244/0 و 8938/0 میباشند که نشاندهنده خطای کمتر و درنتیجه دقت و عملکرد بهتر شبکه عصبی در پیشبینی مقاومت بتن به روش بارنقطهای دارد. نتیجه این پژوهش نشان داد که توافق خوبی میان سنجش مقاومت فشاری بتن به کمک روشهای مبتنی بر محاسبات نرم و مشاهدات واقعی وجود دارد که علاوه بر سهولت، موجب کاهش زمان ارزیابی مقاومت بتن درجا و کاهش هزینهی مطالعات آزمایشگاهی میشود. | ||
کلیدواژهها | ||
مقاومت فشاری بتن؛ روش بارنقطه ای؛ محاسبات نرم؛ شبکه عصبی مصنوعی؛ سیستم نروفازی؛ رگرسیون چندمتغیره | ||
عنوان مقاله [English] | ||
Evaluation of artificial neural network, neuro-fuzzy and multivariate regression modelling for prediction of concrete compressive strength via point load test | ||
نویسندگان [English] | ||
meysam effati1؛ rahmat madandoust2؛ zeynab fallah zarjoo bazkiyaei3 | ||
1Assistant Professor, Department of Civil Engineering (Road & Transportation), Faculty of Engineering, The University of Guilan, Iran | ||
2university of guilan | ||
3Ph.D. student, university of guilan | ||
چکیده [English] | ||
Nowadays, the determination of in place concrete strength is more considered. The necessity of in situ testing can be expressed in a variety of applications such as structural change or development, quality control, strength evaluation and concrete performance. In this study the performance of Artificial neural network, Adaptive neuro-fuzzy and Multivariate regression function for measuring the concrete compressive strength with point load method are studied. Also, a computational relation is presented based on multivariate regression method for prediction of concrete compressive strength with point load method. The results indicated that the neural network, neuro-fuzzy and regression models are suitable in prediction of concrete strength with point load method. The correlation coefficients of neural network, neuro-fuzzy and nonlinear regression models were obtained 0.9412, 0.8244 and 0.8938 respectively. This indicates less error and as a result better accuracy and performance of neural network in prediction of concrete strength with point load method. The results of this study showed that there is good agreement between concrete compressive strength test with soft computing methods and real observations. The proposed method of this study, in addition to ease, reduces the time of evaluation of in situ concrete strength and reduces the cost of laboratory studies. | ||
کلیدواژهها [English] | ||
Concrete compressive strength, Point load method, Soft computing, Artificial neural network, neuro-fuzzy system, Multivariate regression | ||
مراجع | ||
]1[ رحمت مدندوست، ملک محمّد رنجبر و مونا اسلامی، «بررسی روشهای غیرمخرّب و نیمهمخرّب در ارزیابی مقاومت بتن»، چهارمین کنگرة ملی مهندسی عمران، تهران، دانشگاه تهران، 1387. [2] P.J. Robins, "Point load strength test for concrete cores", Magazine of Concrete Research, Vol. 32, No. 111, 1980, pp. 101-111. [3] D.N. Richardson, "Point load test for estimating concrete compressive strength", ACI Materials Journal, Vol. 86. No. 4, 1989, pp. 409-416. [4] A. Zacoeb, k. Ishibashi and Y. Ito, "Estimating the compressive strength of drilled concrete cores by point load testing", Proceeding of the 29th JCI Annual Meeting, Vol. 29, No. 1, 2007, pp. 525-530. [5] A. Zacoeb and K. Ishibashi, "Point load test application for estimating compressive strength of concrete structures from small core", Journal of Engineering and Applied Sciences, Vol. 4. No. 7, 2009, pp. 46-57. [6] L. Selçuk and H. Süleyman Gökçe, "Estimation of the compressive strength of concrete under point load and its approach to strength criterions", KSCE Journal of Civil Engineering, Vol. 19, No. 6, 2015, pp. 1767-1774. ]7[ زینب فلاح زرجو بازکیایی، «مطالعة عددی و تجربی رفتار بتن تحت آزمایش بار نقطهای»، پایاننامه کارشناسی ارشد سازه، رشت، دانشگاه گیلان، 1395. [8] R. Madandoust, Z.F.Z Bazkiyaei and M. Kazemi, "factor influening point load tests on concrete", asian journal of civil engineering, Vol. 19. No. 8, 2018, pp. 937-947. [9] R. Madandoust, H. Bungey and R. ghavidel, "prediction of concrete compressive strength by means of core testing using GMDH-type neural network and ANFIS models", Computational Materials Science, Vol. 51, No. 1, 2012, pp. 261-272. ]10[ محمّدمهدی یوسفی و موسی مظلوم، «روشهای ترکیب شبکة عصبی در پیشبینی نتایج آزمایشهای روانی و مقاومتی بتن خودتراکم»، مجلة مدلسازی در مهندسی، سال 12، شمارة 37، 1393، صفحة 34-39. ]11[ جواد احدیان و فاطمه بهروزی، «کاربرد سیستم تطبیقی ANFIS در تخمین پتانسیل تحکیم خاکهای رسی»، مجلة مدلسازی در مهندسی، سال 14، شمارة 45، 1395، صفحة 17-31. ]12[ علی حیدری، داود توکّلی و پویان فخّاریان، «تقریب مقادیر ویژه ورق با استفاده از شبکة عصبی مصنوعی»، مجلة مدلسازی در مهندسی، سال 11، شمارة 35، 1392، صفحة 49-62. ]13[ محمّدباقر منهاج، مبانی شبکههای عصبی (هوش محاسباتی)، مرکز نشر دانشگاه امیرکبیر، ایران، 1381. [14] J.S. Jang, "adaptive-network-based fuzzy inference system", IEEE transactions on systems, Vol 23, No. 3, 1993, pp. 665-685. [15] M.G. Schap, F.J. Leij and M.T. Genuchten, "neural network analysis for hierarchical prediction of soil hydraulic properties", Journal of Soil Science Society of America, Vol. 62, No. 4, 1998, pp. 847-855. | ||
آمار تعداد مشاهده مقاله: 573 تعداد دریافت فایل اصل مقاله: 248 |