تعداد نشریات | 21 |
تعداد شمارهها | 603 |
تعداد مقالات | 8,919 |
تعداد مشاهده مقاله | 66,852,760 |
تعداد دریافت فایل اصل مقاله | 7,450,185 |
Coefficient bounds of m-fold symmetric bi-univalent functions for certain subclasses | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، Special Issue، اسفند 2021، صفحه 71-82 اصل مقاله (360.12 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.4845 | ||
نویسندگان | ||
Nihad Hameed Shehab* ؛ Abdul Rahman S. Juma | ||
Department of Mathematics, College of Education for Pure Sciences, University of Anbar, Anbar, Iraq | ||
تاریخ دریافت: 26 مهر 1399، تاریخ بازنگری: 13 دی 1399، تاریخ پذیرش: 05 بهمن 1399 | ||
چکیده | ||
In this article, the authors introduce two new subclasses of a class m-fold symmetric biunivalent functions in open unit disk. Coefficient bounds for the Taylor-Maclaurin coefficients |am+1| and |a2m+1| are obtained. Furthermore, we solve ”Fekete-Szeg” ”o” functional problems for functions in FP,m(γ, µ, ϑ) and MP,m(κ, η, ϑ). Also, several certain special improver results for the associated classes are presented. | ||
کلیدواژهها | ||
Analytic functions؛ Bi-Univalent functions؛ Fekete-Szeg¨o coefficient؛ Taylor-Maclaurin series؛ Univalent functions | ||
مراجع | ||
[1] E. A. Adegani,S. Bulut, A. Zireh, Coefficient estimates for a subclass of analytic bi-univalent functions. Bulletin of the Korean Mathematical Society, 55(2), (2018)405-413. [2] S.Altınkaya, S. Yal¸cın , On the (p, q)-Lucas polynomial coefficient bounds of the bi-univalent function class σ. Bolet´ın de la Sociedad Matem´atica Mexicana, 25(3),(2019) 567-575. [3] A. Baernstein, D. A. Brannan, J. G. Clunie, Aspects of contemporary complex analysis. Analytic functions of bounded mean oscillation.,(1980) 2-26. [4] S. Bulut, Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions. Turkish Journal of Mathematics, 40(6), (2016) 1386-1397. [5] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo. ( 1983). [6] H. O. G¨uney, G. Murugusundaramoorthy,J. Sok´o l, Subclasses of bi-univalent functions related to shell-like curves ¨ connected with Fibonacci numbers. Acta Universitatis Sapientiae, Mathematica, 10(1), (2018) 70-84. [7] M. Haji Mohd, M. Darus, Fekete-Szeg¨o problems for quasi-subordination classes. In Abstract and Applied Analysis (Vol. 2012). Hindawi.(2012). [8] A. R. S. Juma, M. H. Saloomi, Coefficient Estimates for Subclasses of Regular Functions. Iraqi Journal of Science, (2018) 1710-1716. [9] M. Lewin, On a coefficient problem for bi-univalent functions. Proceedings of the American mathematical society, 18(1), (1967)63-68.[10] C. Pommerenke, On the coefficients of close-to-convex functions. The Michigan Mathematical Journal, 9(3), (1962) 259-269. [11] H. M. Srivastava ,N. Tuneski , E. Georgieva-Celakoska, Some distortion and other properties associated with a family of n-fold symmetric Koebe type functions, Austral. J. Math. Anal. Appl. 9 (2) , Article 1,(2012) 1–17. [12] H. M. Srivastava, A. K. Wanas, Initial Maclaurin Coefficient Bounds for New Subclasses of Analytic and m-Fold Symmetric Bi-Univalent Functions De-fined by a Linear Combination. Kyungpook Math. J, 59, (2019) 493-503. [13] H. M., Srivastava, S. S. Eker,S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator. Bulletin of the Iranian Mathematical Society, 44(1),(2018) 149-157. [14] H. M., Srivastava, S. S. Eker, S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator. Bulletin of the Iranian Mathematical Society, 44(1),(2018) 149-157.. [15] H. M. Srivastava, ,S. Gaboury, F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afrika Matematika, 28(5-6), (2017)693-706. [16] H. M. Srivastava,A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions. Applied mathematics letters, 23(10),(2010) 1188-1192. [17] A. K. Wanas, A. L. Alina, Applications of Horadam Polynomials on Bazilevic Bi-Univalent Function Satisfying Subordinate Conditions. In Journal of Physics: Conference Series (Vol. 1294, No. 3, p. 032003). IOP Publishing. (2019, September). [18] A. K. Wanas, A. H. Majeed, Chebyshev polynomial bounded for analytic and bi-univalent functions with respect to symmetric conjugate points. Applied Mathematics E-Notes, 19,(2019) 14-21. [19] A. K. Wanas,S. Yal¸cın, Initial coefficient estimates for a new subclasses of analytic and m-fold symmetric biunivalent functions. Malaya Journal of Matematik (MJM), 7(3, 2019), (2019). 472-476. [20] Q. H. Xu, Y. C. Gui, H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Applied Mathematics Letters, 25(6), (2012)990-994. | ||
آمار تعداد مشاهده مقاله: 44,314 تعداد دریافت فایل اصل مقاله: 562 |