تعداد نشریات | 21 |
تعداد شمارهها | 603 |
تعداد مقالات | 8,919 |
تعداد مشاهده مقاله | 66,852,766 |
تعداد دریافت فایل اصل مقاله | 7,450,191 |
A New Hybrid Optimization Algorithm for the Optimal Allocation of Goods in Shop Shelves | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، Special Issue، اسفند 2021، صفحه 146-160 اصل مقاله (425.18 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.4932 | ||
نویسنده | ||
Maliheh Khatami* | ||
Department of Software Engineering, Damghan University, Damghan, Iran | ||
تاریخ دریافت: 19 خرداد 1399، تاریخ بازنگری: 25 آذر 1399، تاریخ پذیرش: 18 دی 1399 | ||
چکیده | ||
In retail operation management, shelf space allocation problem is an important problem that affects profitability. Various researches have demonstrated that the shelf space allocation of a product affects that product's sales. The decision that how much of which product, where and when should be placed on shelves is a critical issue in retail operation management. In this paper a new hybrid meta-heuristic algorithm based on forest optimization algorithm (FOA) and simulated annulling (SA) is presented to address the shop shelf allocation problem. To apply FOA for shelf space allocation problem, the basic arithmetic operators of FOA have been modified regarding the characteristics of this problem and FOA is improved by SA. Results obtained from an expensive experimental phase show the better performance of the proposed algorithm in comparison with other presented algorithm from the literature. Also, results show the suitability and benefits of the proposed algorithm in finding high-quality solutions and robustness. | ||
کلیدواژهها | ||
retailing؛ shelf space allocation problem؛ optimization؛ forest optimization algorithm؛ simulated annulling | ||
مراجع | ||
[1] M. Castelli and L. Vanneschi, Genetic algorithm with variable neighborhood search for the optimal allocation of goods in shop shelves, Oper. Res. Lett. 42(5) (2014), 355–360. [2] A. Chaghari, M. R. Feizi-Derakhshi and M. A. Balafar, Fuzzy clustering based on Forest optimization algorithm, J. King Saud Univer. Comp. Infor. Sci. 30(1) (2018), 25–32. [3] P. Desmet and V. Renaudin, Estimation of product category sales responsiveness to allocated shelf space, Inter, J. Res. Mark. 15(5) (1998), 443–457. [4] X. Dreze, S. J. Hoch and M. E. Purk, Shelf management and space elasticity, J. Reta. 70(4) (1994), 301–326. [5] M. Eisend, Shelf space elasticity: A meta-analysis, J. Reta. 90(2) (2014), 168–181. [6] M. Ghaemi and M. R. Feizi-Derakhshi, Forest optimization algorithm, Exp. Syst. Appl. 41(15) (2014), 6676–6687. [7] M. Ghaemi and M. R. Feizi-Derakhshi, Feature selection using forest optimization algorithm., Patt. Recog. 60 (2016), 121–129. [8] H. K. Gajjar G. K. Adil, A piecewise linearization for retail shelf space allocation problem and a local search heuristic, Ann. Oper. Res. 179(1) (2010), 149–167. [9] J. M. Hansen, S. Raut, and S. Swami, Retail shelf allocation: a comparative analysis of heuristic and metaheuristic approaches, J. Reta. 86(1) (2010), 94–105. [10] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Optimization by simulated annealing, Sci., 220(4598) (1983), 671–680. [11] A. Lim, B. Rodrigues and X. Zhang, Metaheuristics with local search techniques for retail shelf-space optimization, Manag. Sci. 50(1) (2004), 117–131. [12] M. Maadi, M. Javidnia and M. Ghasemi, Applications of two new algorithms of cuckoo optimization (CO) and forest optimization (FO) for solving single row facility layout problem (SRFLP), J. AI Data Min. 4(1) (2016), 35–48. [13] M. Maadi, M. Javidnia and R. Jamshidi, Two Strategies based on meta-heuristic algorithms for parallel row ordering problem (PROP), Iran. J. Manag. Stud. 10(2) (2017), 467–498. [14] D. C. Montgomery, Design and analysis of experiments, John Wiley & Sons, 2017. [15] B. Naderi, M. Khalili and R. Tavakkoli-Moghaddam, A hybrid artificial immune algorithm for a realistic variant of job shops to minimize the total completion time. Comput. Indust. Engin. 56(4) (2009), 1494–1501. [16] S. M. Orand, A. Mirzazadeh, F. Ahmadzadeh and F. Talebloo, Optimization of the inflationary inventory control model under stochastic conditions with Simpson approximation: Particle swarm optimization approach, Iran. J. Manag. Stud. 8(2) (2015), 203–220. [17] V. Sahargahi and M. R. Feizi-Derakhshi, Course timetabling using Forest algorithm, Inter. J. Comput. Sci. Network Security, 17(2) (2017), 83–93. [18] P. M. Reyes and G. V. Frazier, Goal programming model for grocery shelf space allocation, Europ. J. Oper. Res. 181(2) (2007), 634–644. [19] T. Van Woensel, R. A. C. M. Broekmeulen, K. H. van Donselaar and J. C. Fransoo, Planogram integrity: a serious issue, ECR J. 6 (2006), 4–5. [20] M. H. Yang and W. C. Chen, A study on shelf space allocation and management, Inter. J. Produc. Econ. 60 (1999), 309–317. [21] M. H. Yang, An efficient algorithm to allocate shelf space, Europ. J. Oper. Res. 131(1) (2001), 107–118. [22] E. Yadegari, H. Najmi, M. Ghomi-Avili and M. Zandieh, A flexible integrated forward/reverse logistics model with random path-based memetic algorithm, Iran. J. Manag. Stud. 8(2) (2015), 287–313. [23] M. Zareei and H. A. Hassan-Pour, A multi-objective resource-constrained optimization of time-cost trade-off problems in scheduling project, Iran. J. Manag. Stud. 8(4) (2015), 653–685. | ||
آمار تعداد مشاهده مقاله: 44,154 تعداد دریافت فایل اصل مقاله: 527 |