تعداد نشریات | 21 |
تعداد شمارهها | 606 |
تعداد مقالات | 8,954 |
تعداد مشاهده مقاله | 66,944,862 |
تعداد دریافت فایل اصل مقاله | 7,541,807 |
بررسی اثر آنیون نمک نیکل و الکترولیت بر روی فعالیت الکتروکاتالیزوری لایه نازک هیدروکسید نیکل در الکترواکسایش آب | ||
شیمى کاربردى روز | ||
دوره 16، شماره 58، فروردین 1400، صفحه 137-148 اصل مقاله (971.38 K) | ||
نوع مقاله: مقاله علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/chem.2020.19560.1786 | ||
نویسندگان | ||
مهران نوذری اسبمرز؛ ماندانا امیری* ؛ ابوالفضل بضاعت پور؛ سیمین عرشی | ||
گروه شیمی، دانشکده علوم،دانشگاه محقق اردبیلی، اردبیل، ایران | ||
تاریخ دریافت: 29 دی 1398، تاریخ بازنگری: 25 فروردین 1399، تاریخ پذیرش: 15 تیر 1399 | ||
چکیده | ||
در این تحقیق، یک روش لایه نشانی الکتروشیمیایی بسیار ساده، آسان و سریع برای ایجاد فیلم نازک هیدروکسید نیکلNi(OH)2 نشان داده شده است. این لایه نازک نیکل هیدروکسید، قادر است به عنوان کاتالیزور واکنش الکترواکسایش آب مورد استفاده قرار می-گیرد. ولتامتری چرخهای و الکترولیز به روش کرونوآمپرومتری با فیلم Ni (OH)2 در محلول آبی (0/10 pH) جریان کاتالیزوری خوبی را نشان میدهد. فیلم هیدروکسید نیکل با میکروسکوپ الکترونی روبشی (SEM)، طیف سنجی فوتوالکترون اشعه ایکس (XPS)، پراش پرتو X (XRD) و روشهای ولتامتری مشخصهیابی شد. نتایج نشان داد که فیلم هیدروکسید نیکل یک کاتالیزور ناهمگن مناسب برای اکسایش آب است که در مدت زمان طولانی بدون از دستدادن بازده عملکرد خوبی دارد. اثر پارامترهای مختلف الکتروسنتز هیدروکسید نیکل، مانند نوع نمک نیکل، الکترولیت پشتیبان، pH و زمان لایه نشانی الکتروشیمیایی هیدروکسید نیکل بر روی بازده اکسایش آب بررسی شد. این فیلم کاتالیزوری در الکترولیت پشتیبان بورات با جریان شروع به ترتیب در حدود 1 میلیآمپر بر سانتیمتر مربع و 10 میلی آمپر بر سانتیمترمربع در0/10 pH به ترتیب دارای اضافه پتانسیل 60 میلیولت و 540 میلیولت است. عملکرد کاتالیزوری مواد توسط الکترولیز طولانی مدت در پتانسیل ثابت 1/1 ولت در مقابل الکترود کالومل اشباع (SCE) با چگالی جریان پایدار 5/4 میلیآمپر بر سانتیمتر مربع برای 0/10 pH (حداقل برای 5 ساعت) و راندمان فارادیک تقریبا 97٪ به دست آمده است. | ||
کلیدواژهها | ||
الکترواکسایش آب؛ فیلم هیدروکسید نیکل؛ تولید اکسیژن | ||
عنوان مقاله [English] | ||
The effect of nickel salt source and anion of electrolyte on electro-driven water oxidation activity using nickel hydroxide thin film | ||
نویسندگان [English] | ||
Mehran Nozari-asbmarz؛ Mandana Amiri؛ Abolfazl Bezaatpour؛ Simin Arshi | ||
Department of Chemistry, Faculty of Science, Mohaghegh Ardabili University, Ardabil, Iran | ||
چکیده [English] | ||
In this approach, we demonstrate a very simple, easy and fast electrodeposition method to form nickel hydroxide (Ni(OH)2) thin film which is able to catalyze the water electro-oxidation reaction. Cyclic voltammetry and bulk electrolysis with Ni(OH)2 film in aqueous solution (pH 10.0) exhibited good catalytic current. The nickel oxide film was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and voltammetric methods. The results shows that Ni(OH)2 film is a robust heterogeneous water oxidation catalyst which has been used in long time without missing efficiency. The effect of several parameters in electro-synthesize of nickel hydroxide such as the kind of nickel salts, supporting electrolyte, pH and electrodeposition time of nickel hydroxide were investigated on water oxidation efficiency. The film exhibits an overpotentials of 60 mV and 540 mV at the onset of catalytic current in borate supporting electrolyte at around 1 mA cm-2 and 10 mA cm-2 in pH 10.0, respectively. The catalytic performance of the material is demonstrated by long-term electrolysis at 1.1 V versus saturated calomel electrode (SCE) with a stable current density ~ 4.5 mA for pH 10.0 (for at least 5 h), and a Faradaic efficiency of almost 97% is obtained. | ||
کلیدواژهها [English] | ||
Water electro-oxidation, Nickel hydroxide film, oxygen evolution | ||
مراجع | ||
[1] B.J. Trześniewski, O. Diaz-Morales, D.A. Vermaas, A. Longo, W. Bras, M.T. Koper, W.A. Smith, Journal of the American Chemical Society, 137 (2015) 15112.
[2] N. Atar, T. Eren, M.L. Yola, H. Karimi-Maleh, B. Demirdögen, RSC Advances, 5 (2015) 26402.
[3] M.E. Lyons, R.L. Doyle, M.P. Browne, I.J. Godwin, A.A. Rovetta, Current Opinion in Electrochemistry, 1 (2017) 40.
[4] P.D. Tran, M. Nguyen, S.S. Pramana, A. Bhattacharjee, S.Y. Chiam, J. Fize, M.J. Field, V. Artero, L.H. Wong, J. Loo, Energy & Environmental Science, 5 (2012) 8912.
[5] K. Fan, H. Chen, Y. Ji, H. Huang, P.M. Claesson, Q. Daniel, B. Philippe, H. Rensmo, F. Li, Y. Luo, Nature communications, 7 (2016) 1.
[6] J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri, X. Sun, Advanced materials, 28 (2016) 215.
[7] Y.R. Zheng, M.R. Gao, Q. Gao, H.H. Li, J. Xu, Z.Y. Wu, S.H. Yu, Small, 11 (2015) 182.
[8] T. Wada, K. Tsuge, K. Tanaka, Angewandte Chemie International Edition, 39 (2000) 1479.
[9] S. Lin, Y. Pineda‐Galvan, W.A. Maza, C.C. Epley, J. Zhu, M.C. Kessinger, Y. Pushkar, A.J. Morris, ChemSusChem, 10 (2017) 514.
[10] K.S. Joya, N.K. Subbaiyan, F. D'Souza, H.J. de Groot, Angewandte Chemie International Edition, 51 (2012) 9601.
[11] K. Xu, P. Chen, X. Li, Y. Tong, H. Ding, X. Wu, W. Chu, Z. Peng, C. Wu, Y. Xie, Journal of the American Chemical Society, 137 (2015) 4119.
[12] K. Fominykh, J.M. Feckl, J. Sicklinger, M. Döblinger, S. Böcklein, J. Ziegler, L. Peter, J. Rathousky, E.W. Scheidt, T. Bein, Advanced Functional Materials, 24 (2014) 3123.
[13] K. Fominykh, P. Chernev, I. Zaharieva, J. Sicklinger, G. Stefanic, M. Döblinger, A. Müller, A. Pokharel, S. Böcklein, C. Scheu, ACS nano, 9 (2015) 5180.
[14] S. Hadith, Sh. Nia. Shahram, J. Of Applied Chemistry, 29 (1398) 140, in Persian.
[15] F. Li, H. Li, Y. Zhu, J. Du, Y. Wang, L. Sun, Chinese Journal of Catalysis, 38 (2017) 1812.
[16] A. Singh, S.L. Chang, R.K. Hocking, U. Bach, L. Spiccia, Energy & Environmental Science, 6 (2013) 579.
[17] M. Yoshida, S. Onishi, Y. Mitsutomi, F. Yamamoto, M. Nagasaka, H. Yuzawa, N. Kosugi, H. Kondoh, The Journal of Physical Chemistry C, 121 (2017) 255.
[18] F. Basharat, U. Rana, M. Shahid, M. Serwar, RSC Advances, 5 (2015) 86713.
[19] P. Babar, A. Lokhande, M. Gang, B. Pawar, S. Pawar, J.H. Kim, Journal of industrial and engineering chemistry, 60 (2018) 493.
[20] C. Jiang, B. Zhao, J. Cheng, J. Li, H. Zhang, Z. Tang, J. Yang, Electrochimica Acta, 173 (2015) 399.
[21] J. Wu, J. Subramaniam, Y. Liu, D. Geng, X. Meng, Journal of Alloys and Compounds, 731 (2018) 766.
[22] Y. Zhang, Y. Liu, Y. Guo, Y.X. Yeow, H. Duan, H. Li, H. Liu, Materials Chemistry and Physics, 151 (2015) 160.
[23] Z. Wu, Z. Wang, F. Geng, ACS applied materials & interfaces, 10 (2018) 8585.
[24] R.D. Smith, R.S. Sherbo, K.E. Dettelbach, C.P. Berlinguette, Chemistry of Materials, 28 (2016) 5635.
[25] D.K. Bediako, B. Lassalle-Kaiser, Y. Surendranath, J. Yano, V.K. Yachandra, D.G, Journal of the American Chemical Society, 134 (2012) 6801.
[26] A. Mahmood, F. Tezcan, G. Kardaş, International Journal of Hydrogen Energy, 42 (2017) 2368.
[27] M. Dincă, Y. Surendranath, D.G. Nocera, Proceedings of the National Academy of Sciences, 107 (2010) 10337.
[28] M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang, Y. Yan, Journal of the American Chemical Society, 136 (2014) 7077.
[29] Z. Yue, W. Zhu, Y. Li, Z. Wei, N. Hu, Y. Suo, J. Wang, Inorganic chemistry, 57 (2018) 4693.
[30] X. Han, Y. Yu, Y. Huang, D. Liu, B. Zhang, ACS Catalysis, 7 (2017) 6464.
[31] L. Tong, W. Wu, K. Kuepper, A. Scheurer, K. Meyer, ChemSusChem, 11 (2018) 2752.
[32] H.Q. Fu, L. Zhang, C.W. Wang, L.R. Zheng, P.F. Liu, H.G. Yang, ACS Energy Letters, 3 (2018) 2021.
[33] M. Gao, C. Sun, H. Lei, J. Zeng, Q. Zhang, Nanoscale, 10 (2018) 17546.
[34] P.W. Menezes, A. Indra, O. Levy, K. Kailasam, V. Gutkin, J. Pfrommer, M. Driess, Chemical Communications, 51 (2015) 5005. | ||
آمار تعداد مشاهده مقاله: 468 تعداد دریافت فایل اصل مقاله: 377 |