تعداد نشریات | 21 |
تعداد شمارهها | 607 |
تعداد مقالات | 8,974 |
تعداد مشاهده مقاله | 66,970,098 |
تعداد دریافت فایل اصل مقاله | 7,564,546 |
On the Cauchy dual and complex symmetric of composition operators | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 8، دوره 12، شماره 2، بهمن 2021، صفحه 85-97 اصل مقاله (424.93 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2020.20826.2203 | ||
نویسنده | ||
Morteza Sohrabi* | ||
Department of Mathematics, Lorestan University, Khorramabad, Iran | ||
تاریخ دریافت: 16 تیر 1399، تاریخ پذیرش: 18 مرداد 1399 | ||
چکیده | ||
In this paper, firstly we show that some classical properties for Cauchy dual and Moore-Penrose inverse of composition operators, such as complex symmetric and Aluthge transform on $L^{2}(\Sigma)$. Secondly we give a characterization for some operator classes of weak $p$-hyponormal via Moore-Penrose inverse of composition operators. Finally, some examples are then presented to illustrate that, the Moore-Penrose inverse of composition operators lie between these classes. | ||
کلیدواژهها | ||
Cauchy dual؛ Moore-Penrose inverse؛ polar decomposition؛ Aluthge transform؛ complex symmetric؛ $p$-hyponormal؛ $p$-paranormal | ||
مراجع | ||
[1] A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integ. Eq. Oper. Theo. 13 (1990) 307–315. [2] M. L. Arias, G. Corach and M. C. Gonzalez, Generalized inverse and Douglas equations, Proc. Amer. Math. Soc. 136 (2008) 3177–3183.[3] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Springer-Verlag, New York,2003. [4] N. L. Braha and I. Hoxha, (p, r, q)-∗-Paranormal and absolute-(p, r)-∗-paranormal operators, J. Math. Anal. 4 (2013) 14–22. [5] C. Burnap and I. Jung, Composition operators with weak hyponormalities, J. Math. Anal. Appl. 337 (2008) 686–694. [6] C. Burnap, I. Jung and A. Lambert, Separating partial normality classes with composition operators, J. Oper. Theo. 53 (2005) 381–397. [7] J. Campbell and J. Jamison, On some classes of weighted composition operators, Glasgow Math. J. 32 (1990) 87–94. [8] J. Campbell, M. Embry-Wardrop and R. Fleming, Normal and quasinormal weighted composition operators, Glasgow Math. J. 33 (1991) 275–279. [9] J. Campbell and W. Hornor, Localising and seminormal composition operators on L2, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 301–316. [10] S. R. Caradus,Generalized Inverse and Operator Theory, Queens Papers in Pure and Applied Mathematics, 50, Queens University, Kingston, Ont, 1978. [11] S. Chavan, On operators Cauchy dual to 2-hyperexpansive operators, Proc. Edinburgh Math. Soc. 50 (2007) 637–552. [12] M. Cho and T. Yamazaki, Characterizations of p-hyponormal and weak hyponormal weighted composition operators, Acta Sci. Math. (Szeged) 76 (2010) 173–181. [13] A. Daniluk, and J. Stochel, Seminormal composition operators induced by affine transformations, Hokkaido Math. J. 26 (1997) 377–404. [14] D. S. Djordjevic, Further results on the reverse order law for generalized inverses, SIAM J. Matrix Anal. Appl. 29(4) (2007) 1242–1246. [15] D. S. Djordjevic and N. C. Dincic, Reverse order law for the Moore–Penrose inverse, J. Math. Anal. Appl. 361 (2010) 252–261. [16] S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006) 1285–1315. [17] D. Harrington and R. Whitley, Seminormal composition operators, J. Oper. Theo. 11 (1984) 125–135. [18] J. Herron, Weighted conditional expectation operators, Oper. Mat. 5 (2011) 107–118. [19] T. Hoover, A. Lambert and J. Queen, The Markov process determined by a weighted composition operator, Studia Math. LXXII (1982), 225-235. [20] M. R. Jabbarzadeh and M. R. Azimi, Some weak hyponormal classes of weighted composition operators, Bull. Korean Math. Soc. 47 (2010) 793–803. [21] S. Jung, Y. Kim, E. Ko and J. E. Lee, Complex symmetric weighted composition operators on H2 (D), J. Funct. Anal. 267 (2014) 323–351. [22] F. Kimura, Analysis of non-normal operators via Aluthge transformation, Integ. Eq. Oper. Theo. 50 (2004) 375–384. [23] A. Lambert, Localising sets for sigma-algebras and related point transformations, Proc. Roy. Soc. Edinburgh Sect. A 118 (1991) 111–118. [24] A. Lambert, Hyponormal composition operators, Bull. London Math. Soc. 18 (1986) 395–400. [25] A. Olofsson, Wandering subspace theorems, Integral Equ. Oper. Theo. 51 (2005) 395–409. [26] M. M. Rao, Conditional Measure and Applications, Marcel Dekker, New York, 1993. [27] D. Senthilkumar and P. Maheswari Naik, Weyl’s theorem for algebraically absolute-(p, r)-paranormal operators, Banach J. Math. Anal. 5 (2011) 29–37. [28] R. K. Singh and J. S. Manhas, Composition Operators on Function Spaces, North Holland Math. Studies 179, Amsterdam 1993. [29] S. Shimorin, Wold-type decompositions and wandering subspaces for operators close to isometries, J. Reine Angew. Math. 531 (2001) 147–189. [30] R. Whitley, Normal and quasinormal composition operators, Proc. Amer. Math. Soc. 70 (1978) 114–118. [31] T. Yamazaki and M. Yanagida, A further generalization of paranormal operators, Sci. Math. 3.1 (2000) 23–31. [32] S. Panayappan and A. Radharamani, A note on p-paranormal operators and absolute k-paranormal operators, Int. J. Math. Anal. 2 (2008) 25–28. [33] M. R. Jabbarzadeh, H. Emamalipour and M. Sohrabi Chegeni, Parallelism between Moore-Penrose inverse and Aluthge transformation of operators, Appl. Anal. Discrete Math. 12(2) (2018) 318–335. | ||
آمار تعداد مشاهده مقاله: 15,879 تعداد دریافت فایل اصل مقاله: 644 |