تعداد نشریات | 21 |
تعداد شمارهها | 607 |
تعداد مقالات | 8,974 |
تعداد مشاهده مقاله | 66,970,058 |
تعداد دریافت فایل اصل مقاله | 7,564,478 |
Stability of (1,2)-total pitchfork domination | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 20، دوره 12، شماره 2، بهمن 2021، صفحه 265-274 اصل مقاله (504.78 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.5035 | ||
نویسندگان | ||
Lamees K. Alzaki؛ Mohammed A. Abdlhusein* ؛ Amenah Kareem Yousif | ||
Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq | ||
تاریخ دریافت: 05 دی 1399، تاریخ بازنگری: 30 بهمن 1399، تاریخ پذیرش: 13 اسفند 1399 | ||
چکیده | ||
Let $G=(V, E)$ be a finite, simple, and undirected graph without isolated vertex. We define a dominating $D$ of $V(G)$ as a total pitchfork dominating set, if $1\leq|N(t)\cap V-D|\leq2$ for every $t \in D$ such that $G[D]$ has no isolated vertex. In this paper, the effects of adding or removing an edge and removing a vertex from a graph are studied on the order of minimum total pitchfork dominating set $\gamma_{pf}^{t} (G)$ and the order of minimum inverse total pitchfork dominating set $\gamma_{pf}^{-t} (G)$. Where $\gamma_{pf}^{t} (G)$ is proved here to be increasing by adding an edge and decreasing by removing an edge, which are impossible cases in the ordinary total domination number. | ||
کلیدواژهها | ||
total domination؛ stability of domination؛ pitchfork domination | ||
مراجع | ||
[1] M. A. Abdlhusein, Doubly connected bi-domination in graphs, Discrete Math. Algo. Appl. 13(2) (2021) 2150009. [2] M. A. Abdlhusein, Applying the (1,2)-pitchfork domination and its inverse on some special graphs, Bol. Soc. Paran. Mat., accepted to appear (2021). [3] M. A. Abdlhusein, Stability of inverse pitchfork domination, Int. J. Nonlinear Anal. Appl. 12(1) (2021) 1009–1016. [4] M. A. Abdlhusein and M. N. Al-Harere, Pitchfork domination and it’s inverse for corona and join operations in graphs, Proc. Int. Math. Sci. I(2) (2019) 51–55. [5] M. A. Abdlhusein and M. N. Al-Harere, New parameter of inverse domination in graphs, Indian J. Pure Appl. Math.(accepted to appear)(2021). [6] M. A. Abdlhusein and M. N. Al-Harere, Doubly connected pitchfork domination and its inverse in graphs, TWMS J. App. Eng. Math., (accepted to appear) (2021). [7] M. A. Abdlhusein and M. N. Al-Harere, Some modified types of pitchfork domination and its inverse, Bol. Soc. Paran. Mat., accepted to appear (2021). [8] M. A. Abdlhusein and M. N. Al-Harere, Total pitchfork domination and its inverse in graphs, Discrete Math. Algo. Appl.(2020) 2150038. [9] M. A. Abdlhusein and M. N. Al-Harere, Pitchfork domination and its inverse for complement graphs, Proc. IAM, 9(1) (2020) 13–17. [10] M. N. Al-Harere and M. A. Abdlhusein, Pitchfork domination in graphs, Discrete Math. Algo. Appl. 12(2) (2020) 2050025. [11] M. N. Al-Harere and A. T. Breesam, Variant types of domination in spinner graph, Al-Nahrain J. 2 (2019) 127–133. [12] M. N. Al-Harere and P. A. Khuda Bakhash, Changes of tadpole domination number upon changing of graphs, Sci. Int. 31(2) (2019) 197–199. [13] M. N. Al-Harere and P. A. Khuda Bakhash, Tadpole domination in duplicated graphs, Discrete Math. Algo. Appl. 13(2) (2021) 2150003. [14] M. Amraee, N. J. Rad and M. Maghasedi, Roman domination stability in graphs, Math. Rep. 21(71) (2019) 193–204. [15] B. A. Atakul, Stability and domination exponentially in some graphs, AIMS Math. 5(5)(2020) 5063–5075. [16] K. Attalah and M. Chellali, 2-Domination dot-stable and dot-critical graphs, Asian-European J. Math. 21(5) (2021) 2150010. [17] S. Balamurugan, Changing and unchanging isolate domination: edge removal, Discrete Math. Algo. Appl. 9(1) (2017) 1750003. [18] A. Das, R. C. Laskar and N. J. Rad, On α-domination in graphs, Graph. Comb. 34(1) (2018) 193–205. [19] W. J. Desormeaux, T. W. Haynes and M. A. Henning, Total domination critical and stable graphs upon edge removal, Discrete Appl. Math. 158 (2010) 1587–1592. [20] W. J. Desormeaux, T. W. Haynes and M. A. Henning, Total domination stable graphs upon edge addition, Discrete Math. 310 (2010) 3446–3454. [21] F. Harary, Graph Theory, Addison-Wesley, Reading Mass, 1969. [22] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, (1998). [23] T. W. Haynes, S. T. Hedetniemi and P.J. Slater, Domination in Graphs-Advanced Topics, Marcel Dekker Inc., 1998. [24] S. T. Hedetneimi and R. Laskar (Eds.), Bibliography on domination in graphs and some basic definitions of domination parameters, Discrete Math. 86 (1990) 257–277. [25] M. A. Henning and M. Krzywkowski, Total domination stability in graphs, Discrete Appl. Math. 236(19)(2018) 246–255. [26] A. A. Omran and T. A. Ibrahim, Fuzzy co-even domination of strong fuzzy graphs, Int. J. Nonlinear Anal. Appl. 12(1) (2021) 727–734. [27] O. Ore, Theory of graphs, American Mathematical Society, Provedence, R.I., (1962). [28] S. J. Radhi, M. A. Abdlhusein and A. E. Hashoosh, The arrow domination in graphs, Int. J. Nonlinear Anal. Appl. 12(1) (2021) 473–480. [29] V. Samodivkin, A note on Roman domination: changing and unchanging, Aust. J. Comb. 71(2) (2018) 303–311. | ||
آمار تعداد مشاهده مقاله: 15,801 تعداد دریافت فایل اصل مقاله: 527 |