
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,018 |
تعداد مشاهده مقاله | 67,053,107 |
تعداد دریافت فایل اصل مقاله | 7,638,908 |
مبدل DC-DC بدون ترانسفورماتور افزاینده با ضریب بوست بالا مبتنی بر شبکه خازن سوئیچشده فعال | ||
مدل سازی در مهندسی | ||
دوره 19، شماره 66، مهر 1400، صفحه 23-36 اصل مقاله (1.85 M) | ||
نوع مقاله: مقاله برق | ||
شناسه دیجیتال (DOI): 10.22075/jme.2021.22647.2044 | ||
نویسندگان | ||
آرمینه دستگیری1؛ مجید حسین پور* 2؛ علی سیفی1 | ||
1گروه مهندسی برق و کامپیوتر، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
2گروه مهندسی برق و کامپیوتر، دانشکده فنیمهندسی، دانشگاه محقق اردبیلی | ||
تاریخ دریافت: 24 بهمن 1399، تاریخ بازنگری: 08 اردیبهشت 1400، تاریخ پذیرش: 26 اردیبهشت 1400 | ||
چکیده | ||
مبدلهای DC-DC افزاینده با بهره ولتاژ بالا به طور گسنرده در کاربردهای مختلفی از جمله منابع انرژی تجدیدپذیر مورد استفاده قرار میگیرند. در مبدل بوست مرسوم، بهره ولتاژ از طریق تنش ولتاژ بالا، ریپل جریان زیاد و بازده کم ناشی از بهکارگیری نسبت سیکل کاری بالا محدود میشود. در این مقاله برای رفع این مشکل، مبدل DC-DC افزاینده مبتنی بر شبکه خازن سوئیچشده فعال (ASC) پیشنهاد شده است. در این ساختار پیشنهادی هر دو تکنیک خازن سوئیچشده فعال (ASC) و سلف سوئیچشده فعال (ASL) به همراه شاخه سوئیچ و دیود برای دستیابی به بهره ولتاژ بالا ترکیب شده است. به کارگیری سه سوئیچ با دو سیکل کاری مختلف و افزایش بهره ولتاژ با افزودن صرفا یک دیود و خازن از جمله مزایای این مبدل محسوب میشوند. در کنار این مزایا، در مبدل پیشنهادی بر خلاف سایر ساختارهای خازن سوئیچشده مورد استفاده برای افزایش ولتاژ، جریانهای گذرای زیاد برای خازن سوئیچشده فعال وجود ندارد. در این مقاله به ارائه اصول عملکردی مبدل پیشنهادی در رژیم هدایتی پیوسته، طراحی سلفها و خازنهای ساختار ارائه شده و مقایسه این ساختار با دیگر ساختارهای مشابه پرداخته شده است. همچنین المانهای پارازیتی برای محاسبه بهره ولتاژ DC واقعی و بازده مورد بررسی قرار گرفتهاند. در نهایت برای نمایش صحت عملکرد مبدل پیشنهادی، نتایج شبیهسازی در محیط نرم افزار PSIM ارائه شده است. | ||
کلیدواژهها | ||
خارن سوئیچشده فعال (ASC) سلف سوئیچشده فعال (ASL)؛ مبدل بدون ترانسفورماتور افزاینده؛ بهره ولتاژ بالا | ||
عنوان مقاله [English] | ||
A Transformerless High Step-up DC-DC Converter Based on Active Switched Capacitor Network | ||
نویسندگان [English] | ||
Armineh Dastgiri1؛ Majid Hosseinpour2؛ Ali Seifi1 | ||
1Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran | ||
2Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran | ||
چکیده [English] | ||
High step-up DC-DC converters are widely used in various applications such as renewable energy sources. The voltage gain of the conventional boost converter is limited by high voltage stress, high current ripple and low efficiency due to the high duty cycle ratio. In order to solve these problems, a step-up DC-DC converter based on active switched capacitor (ASC) network is proposed. In the proposed structure, both active switched capacitor (ASC) and active switched inductor (ASL) techniques are combined together with the switch and diode array to achieve high voltage gain. Employing three switches with two different duty cycles and increasing the voltage gain by adding only one extra diode and capacitor are the main advantages of this converter. Beside these advantages, unlike other voltage-boosting structures that utilized switched capacitor, the proposed converter avoids the extreme instantaneous currents of capacitor. The operational principles of the proposed converter in the continuous conduction mode (CCM), inductor and capacitor design and comparison of the proposed converter with other similar structures are presented in this article. Also, the parasitic elements are assumed to calculate the DC-voltage gain and the efficiency of the converter accurately. Finally, simulation results are presented in PSIM software to validate the feasibility of the proposed converter. | ||
کلیدواژهها [English] | ||
Active switched capacitor (ASC), Active switched inductor (ASL), Transformerless high step-up converter, High voltage gain | ||
مراجع | ||
[1] لیلا محمدیان، ابراهیم بابائی و محمد باقر بناء شریفیان، "ارائه شیوه جدیدی برای مدلسازی مبدل Cuk بر مبنای گراف سیگنال جریان و کنترل آن به روش مقاوم از نوع حساسیت ترکیبی"، نشریه مدلسازی در مهندسی، دوره 15، شماره 51، زمستان 1396، صفحه 275-288. [2] سید محمد مهدی میرطلائی و گلناز تاجمیر، "طراحی، مدلسازی و ساخت یک مبدل Z-Source بهره بالا برای کاربرد در اتصال منابع انرژی تجدیدپذیر به شبکه برق"، نشریه مدلسازی در مهندسی، دوره 16، شماره 53، تابستان 1397، صفحه 221-229. [3] T. D. Duong, M. K. Nguyen, T. T. Tran, Y. C. Lim, and J. H. Choi, “Transformerless high step-up DC-DC converters with switched-capacitor network”, Electronics, Vol. 8, No. 12, 2019, p. 1420. [4] محمد رضا بنائی و حسین اژدرفائقی بناب، "ارائه، بررسی و مقایسه مبدلهای DC-DC جدید تک کلیده با ضریب بهره بالا و تنش ولتاژ کم دو سر کلید"، نشریه مدلسازی در مهندسی، دوره 17، شماره 56، بهار 1398، صفحه 347-366. [5] W. Hassan, J. L. Soon, S. Gautam, D. D. C. Lu, and W. Xiao, “Optimized Coupled Inductor DC/DC Converter by Integrating Snubber Circuit with Voltage Lift Technique”, IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, October 2020, pp. 1401-1405. [6] X. Fan, H. Sun, Z. Yuan, Z. Li, R. Shi, and N. Ghadimi, “High voltage gain DC/DC converter using coupled inductor and VM techniques”, IEEE Access, Vol. 8, 2020, pp. 131975-131987. [7] W. Hassan, Y. Lu, M. Farhangi, D. D. C. Lu, and W. Xiao, “Design, analysis and experimental verification of a high voltage gain and high-efficiency DC–DC converter for photovoltaic applications”, IET Renewable Power Generation, Vol. 14, No. 10, 2020, pp. 1699-1709. [8] H. Xie, and R. Li, “A novel switched-capacitor converter with high voltage gain”, IEEE Access, Vol. 7, 2019, pp. 107831-107844. [9] G. Zhang, Z. Wang, S. S. Yu, S. Z. Chen, B. Zhang, H. H. C. Iu, and Y. Zhang, “A generalized additional voltage pumping solution for high-step-up converters”, IEEE Transactions on Power Electronics, Vol. 34, No. 7, 2018, pp. 6456-6467. [10] Z. Ye, Y. Lei, and R. C. Pilawa-Podgurski, “The cascaded resonant converter: A hybrid switched-capacitor topology with high power density and efficiency”, IEEE Transactions on Power Electronics, Vol. 35, No. 5, 2019, pp. 4946-4958. [11] N. Vosoughi Kurdkandi, M. Farhadi, E. Babaei, and P. Ghavidel, “Design and analysis of a switched‐capacitor DC‐DC converter with variable conversion ratio”, International Journal of Circuit Theory and Applications, Vol. 48, No. 10, 2020, pp. 1638-1657. [12] S. W. Seo, D. K. Lim, and H. H. Choi, “High step-up interleaved converter mixed with magnetic coupling and voltage lift”, IEEE Access, Vol. 8, 2020, pp. 72768-72780. [13] T. Nouri, N. Nouri, and N. Vosoughi, “A Novel High Step-Up High Efficiency Interleaved DC–DC Converter With Coupled Inductor and Built-In Transformer for Renewable Energy Systems”, IEEE Transactions on Industrial Electronics, Vol. 67, No. 8, 2019, pp. 6505-6516. [14] H. Lei, R. Hao, X. You, and F. Li, “Nonisolated High Step-Up Soft-Switching DC–DC Converter With Interleaving and Dickson Switched-Capacitor Techniques”, IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 8, No. 3, 2019, pp. 2007-2021. [15] M. Farhadi‐Kangarlu, A. Moallemi Khiavi, and Y. Neyshabouri, “A non‐isolated single‐input dual‐output boost DC–DC converter”, IET Power Electronics, 2021, Early View. [16] B. Sharma, and J. Nakka, “Single-phase cascaded multilevel inverter topology addressed with the problem of unequal photovoltaic power distribution in isolated dc links”, IET Power Electronics, Vol. 12, No. 2, 2018, pp. 284-294. [17] Z. Saadatizadeh, P.C. Heris, E. Babaei, and M. Sabahi, “A new nonisolated single-input three-output high voltage gain converter with low voltage stresses on switches and diodes”, IEEE Transactions on Industrial Electronics, Vol. 66, No. 6, 2018, pp. 4308-4318. [18] Y. Wang, Y. Qiu, Q. Bian, Y. Guan, and D. Xu, “A single switch quadratic boost high step up DC–DC converter”, IEEE Transactions on Industrial Electronics, Vol. 66, No. 6, 2018, pp. 4387-4397. [19] L. Yang, T. Liang and J. Chen, “Transformerless DC–DC Converters With High Step-Up Voltage Gain”, IEEE Transactions on Industrial Electronics, Vol. 56, No. 8, 2099, pp. 3144-3152. [20] Y. Tang, T. Wang, and Y. He, “A switched-capacitor-based active-network converter with high voltage gain”, IEEE transactions on power electronics, Vol. 29, No. 6, 2013, pp. 2959-2968. [21] M. Karthikeyan, R. Elavarasu, P. Ramesh, C. Bharatiraja, P. Sanjeevikumar, L. Mihet-Popa, and M. Mitolo, “A hybridization of Cuk and boost converter using single switch with higher voltage gain compatibility”, Energies, Vol. 13, No. 9, 2020, p. 2312. [22] S. Kumaravel, R. A. Narayanankutty, V. S. Rao, and A. Sankar, “Dual input–dual output DC–DC converter for solar PV/battery/ultra-capacitor powered electric vehicle application”, IET Power Electronics, Vol. 12, No. 13, 2019, pp. 3351-3358. [23] L. Yang and T. Liang, “Analysis and Implementation of a Novel Bidirectional DC–DC Converter,” IEEE Transactions on Industrial Electronics, Vol. 59, No. 1, 2012, pp. 422-434. [24] Y. Gu, Y. Chen, B. Zhang, D. Qiu and F. Xie, “High Step-Up DC–DC Converter With Active Switched LC-Network for Photovoltaic Systems”, IEEE Transactions on Energy Conversion, Vol. 34, No. 1, 2019, pp. 321-329. [25] A. Dastgiri, M. Hosseinpour, F. Sedaghati, and S. R. Mousavi-Aghdam, “A High Step-Up DC-DC Converter with Active Switched LC-Network and Voltage-Lift Circuit”, 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC) , 2020, pp. 1-7. [26] M. Lakshmi and S. Hemamalini, “Nonisolated High Gain DC–DC Converter for DC Microgrids”, IEEE Transactions on Industrial Electronics, Vol. 65, No. 2, 2018, pp. 1205-1212.
| ||
آمار تعداد مشاهده مقاله: 824 تعداد دریافت فایل اصل مقاله: 402 |