
International Journal of Nonlinear Analysis and Applications | ||
Article 158, Volume 13, Issue 1, January 0, Pages 1917-1929 PDF (399.43 K) | ||
DOI: 10.22075/ijnaa.2021.23797.2611 | ||
Receive Date: 26 June 2021, Accept Date: 10 November 2021 | ||
References | ||
[1] E. Garajov´a, M. Hlad´ık and M. Rada, Interval linear programming under transformations: Optimal solutions and optimal value range, Cent. Eur. J. Oper. Res. 27 (2019) 601–614. [2] M. Hlad´ık, Optimal value bounds in nonlinear programming with interval data, TOP 19 (2011) 93–106. [3] C. Jiang, X. Han, GR. Liu and GP. Liu, A nonlinear interval number programming method for uncertain optimization problems, Eur. J. Oper. Res. 188(1) (2008) 1–13. [4] C. Jiang, ZG. Zhang, QF. Zhang, X. Han, HC. Xie and J. Liu, A new nonlinear interval programming method for uncertain problems with dependent interval variables, Eur. J. Oper. Res., 238 (2014) 245-253. [5] P. Kumar and G. Panda, Solving nonlinear interval optimization problem using stochastic programming technique, Opsearch 54 (2017) 752–765. [6] VI. Levin, Nonlinear optimization under interval uncertainty, Cybern. Syst. Anal. 35(2) (1999) 297–306. [7] VI. Levin, Optimization in terms of interval uncertainty: The determinization method, Autom. Control Comput. Sci. 46(4) (2012) 157-163. [8] X. Liua, Z. Zhanga and L. Yina, A multi-objective optimization method for uncertain structures based on nonlinear interval number programming method, Mech. Based Des. Struct. Mach. 45(1) (2017) 25–42. [9] Y. Li and YL. Xu, Increasing accuracy in the interval analysis by the improved format of interval extension based on the first order Taylor series, Mech. Syst. Sig. Process. 104 (2018) 744–757. [10] A. Mostafaee and M. Hlad´ık, Optimal value bounds in interval fractional linear programming and revenue efficiency measuring, Cent. Eur. J. Oper. Res. 28 (2020) 963–981. [11] R.E. Moore, Methods and Applications of Interval Analysis, Philadelphia, 1979. | ||
Statistics Article View: 15,865 PDF Download: 2,251 |