تعداد نشریات | 21 |
تعداد شمارهها | 587 |
تعداد مقالات | 8,740 |
تعداد مشاهده مقاله | 66,609,776 |
تعداد دریافت فایل اصل مقاله | 7,171,692 |
Multi-Objective Aerodynamic Optimization of the Exterior Shape of Tall Buildings with Trilateral Cross-Section | ||
Journal of Rehabilitation in Civil Engineering | ||
مقاله 8، دوره 10، شماره 4 - شماره پیاپی 28، بهمن 2022، صفحه 129-145 اصل مقاله (1.54 M) | ||
نوع مقاله: Regular Paper | ||
شناسه دیجیتال (DOI): 10.22075/jrce.2021.23611.1515 | ||
نویسندگان | ||
Mehdi Noormohamadian* ؛ Eysa Salajegheh | ||
Department of Civil Engineering, Shahid Bahonar University of Kerman, Iran | ||
تاریخ دریافت: 16 خرداد 1400، تاریخ بازنگری: 28 آذر 1400، تاریخ پذیرش: 29 آذر 1400 | ||
چکیده | ||
Wind-induced loads are largely dependent upon the exterior shape of buildings, and one highly effective procedure to mitigate them is to apply aerodynamic shape modifications in the aerodynamic optimization procedure (AOP). This study presents the framework of an AOP for shape modifications of the trilateral cross-section tall buildings. The AOP is comprised of a combination of multi-objective optimization algorithm named non-dominated sorting genetic algorithm II (NSGA-II), artificial neural networks, and computational fluid dynamics. The building shape is designed based on the geometric description of its vertical and horizontal profile using seven geometric parameters (design variables) to apply different types and sizes of modifications. In addition, the mean moment coefficients in drag and lift directions are considered as the objective functions. The proposed procedure investigates the effect of the three types of modifications including varying cross-section sizes along the height, twisting, and curved-side on the reduction of objective functions. Finally, a set of optimal building shapes is presented as the Pareto front solutions, which enables the designers to select the optimal shape of the building with additional considerations. The results indicate the high capability of the proposed framework to make appropriate use of various aerodynamic modifications in order to upgrade the aerodynamic performance of the trilateral cross-section tall buildings. | ||
کلیدواژهها | ||
Wind Load؛ Tall Building؛ Computational Fluid Dynamics؛ Multi-Objective Optimization؛ Artificial Neural Networks | ||
مراجع | ||
[1] H. Hayashida and Y. Iwasa, “Aerodynamic shape effects of tall building for vortex induced vibration,” J. Wind Eng. Ind. Aerodyn., vol. 33, no. 1–2, pp. 237–242, Mar. 1990, doi: 10.1016/0167-6105(90)90039-F.
[2] S. Hajra and S. K. Dalui, “Numerical investigation of interference effect on octagonal plan shaped tall buildings,” Jordan J. Civ. Eng., vol. 10, no. 4, pp. 462–479, 2016.
[3] S. Mukherjee, S. Chakraborty, S. K. Dalui, and A. K. Ahuja, “Wind induced pressure on ‘Y’ plan shape tall building,” Wind Struct., vol. 19, no. 5, pp. 523–540, 2014, Accessed: Dec. 17, 2021. [Online]. Available: https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10237151.
[4] T. Chen et al., “Study of flow characteristics in tunnels induced by canyon wind,” J. Wind Eng. Ind. Aerodyn., vol. 202, no. January, p. 104236, 2020, doi: 10.1016/j.jweia.2020.104236.
[5] K. C. S. Kwok and P. A. Bailey, “Aerodynamic Devices for Tall Buildings and Structures,” J. Eng. Mech., vol. 113, no. 3, pp. 349–365, Mar. 1987, doi: 10.1061/(asce)0733-9399(1987)113:3(349).
[6] M. Gu and Y. Quan, “Across-wind loads of typical tall buildings,” J. Wind Eng. Ind. Aerodyn., vol. 92, no. 13, pp. 1147–1165, Nov. 2004, doi: 10.1016/J.JWEIA.2004.06.004.
[7] L. Carassale, A. Freda, and M. Marrè-Brunenghi, “Experimental investigation on the aerodynamic behavior of square cylinders with rounded corners,” J. Fluids Struct., vol. 44, pp. 195–204, 2014, doi: 10.1016/j.jfluidstructs.2013.10.010.
[8] K. P. You, Y. M. Kim, and N. H. Ko, “The evaluation of wind-induced vibration responses to a tapered tall building,” Struct. Des. Tall Spec. Build., vol. 17, no. 3, pp. 655–667, Sep. 2008, doi: 10.1002/TAL.371.
[9] K. R. Cooper, M. Nakayama, Y. Sasaki, A. A. Fediw, S. Resende-Ide, and S. J. Zan, “Unsteady aerodynamic force measurements on a super-tall building with a tapered cross section,” J. Wind Eng. Ind. Aerodyn., vol. 72, no. 1–3, pp. 199–212, Nov. 1997, doi: 10.1016/S0167-6105(97)00258-4.
[10] Y. M. Kim and K. P. You, “Dynamic responses of a tapered tall building to wind loads,” J. Wind Eng. Ind. Aerodyn., vol. 90, no. 12–15, pp. 1771–1782, Dec. 2002, doi: 10.1016/S0167-6105(02)00286-6.
[11] Y. M. Kim, K. P. You, and N. H. Ko, “Across-wind responses of an aeroelastic tapered tall building,” J. Wind Eng. Ind. Aerodyn., vol. 96, no. 8–9, pp. 1307–1319, Aug. 2008, doi: 10.1016/J.JWEIA.2008.02.038.
[12] Y. Kim and J. Kanda, “Characteristics of aerodynamic forces and pressures on square plan buildings with height variations,” J. Wind Eng. Ind. Aerodyn., vol. 98, no. 8–9, pp. 449–465, Aug. 2010, doi: 10.1016/J.JWEIA.2010.02.004.
[13] Y. C. Kim and J. Kand, “Wind pressures on tapered and set-back tall buildings,” J. Fluids Struct., vol. 39, pp. 306–321, May 2013, doi: 10.1016/J.JFLUIDSTRUCTS.2013.02.008.
[14] Y. C. Kim, J. Kanda, and Y. Tamura, “Wind-induced coupled motion of tall buildings with varying square plan with height,” J. Wind Eng. Ind. Aerodyn., vol. 99, no. 5, pp. 638–650, May 2011, doi: 10.1016/J.JWEIA.2011.03.004.
[15] A. Sharma, H. Mittal, and A. Gairola, “Mitigation of wind load on tall buildings through aerodynamic modifications: Review,” J. Build. Eng., vol. 18, pp. 180–194, Jul. 2018, doi: 10.1016/J.JOBE.2018.03.005.
[16] Y. C. Kim, E. K. Bandi, A. Yoshida, and Y. Tamura, “Response characteristics of super-tall buildings – Effects of number of sides and helical angle,” J. Wind Eng. Ind. Aerodyn., vol. 145, pp. 252–262, Oct. 2015, doi: 10.1016/J.JWEIA.2015.07.001.
[17] B. E. Kumar, Y. Tamura, A. Yoshida, Y. C. Kim, and Q. Yang, “LOCAL AND TOTAL WIND FORCE CHARACTERISTICS OF TRIANGULAR-SECTION TALL BUILDINGS,” pp. 179–184, 2012.
[18] H. Tanaka, Y. Tamura, K. Ohtake, M. Nakai, and Y. Chul Kim, “Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations,” J. Wind Eng. Ind. Aerodyn., vol. 107–108, pp. 179–191, Aug. 2012, doi: 10.1016/J.JWEIA.2012.04.014.
[19] Y. Tamura, Y. C. Kim, H. Tanaka, E. K. Bandi, A. Yoshida, and K. Ohtake, “Aerodyanmic and response characteristics of super-tall buildings with various configurations,” Proc. 8th Asia-Pacific Conf. Wind Eng. APCWE 2013, pp. K219–K243, 2013, doi: 10.3850/978-981-07-8012-8_Key-12.
[20] A. Kareem, S. M. J. Spence, E. Bernardini, S. Bobby, and D. Wei, “Using computational fluid dynamics to optimize tall building design,” CTBUH J., no. 3, pp. 38–43, 2013.
[21] E. Bernardini, S. M. J. Spence, D. Wei, and A. Kareem, “Aerodynamic shape optimization of civil structures: A CFD-enabled Kriging-based approach,” J. Wind Eng. Ind. Aerodyn., vol. 144, pp. 154–164, Sep. 2015, doi: 10.1016/J.JWEIA.2015.03.011.
[22] A. Elshaer, G. Bitsuamlak, and A. El Damatty, “Enhancing wind performance of tall buildings using corner aerodynamic optimization,” Eng. Struct., vol. 136, pp. 133–148, Apr. 2017, doi: 10.1016/J.ENGSTRUCT.2017.01.019.
[23] A. Elshaer and G. Bitsuamlak, “Multiobjective Aerodynamic Optimization of Tall Building Openings for Wind-Induced Load Reduction,” J. Struct. Eng., vol. 144, no. 10, p. 04018198, Aug. 2018, doi: 10.1061/(ASCE)ST.1943-541X.0002199.
[24] M. Noormohamadian and E. Salajegheh, “Evaluation and minimization of moment coefficient of tall buildings with trilateral cross-section via a surrogate model,” SN Appl. Sci., vol. 3, no. 2, pp. 1–14, Feb. 2021, doi: 10.1007/S42452-020-04128-5/FIGURES/14.
[25] “SolidWorks 2016 Reference Guide: A comprehensive reference guide with over ... - David Planchard - Google Books.” https://books.google.com/books?hl=en&lr=&id=5VgACwAAQBAJ&oi=fnd&pg=PP3&dq=D.+Planchard,+SolidWorks+2015+Refrence+Guide,+Sdc+Publications.&ots=FZbqb9AanV&sig=VcI3JNw8zRnq3anznxJ2YmFBZCg#v=onepage&q=D. Planchard%2C SolidWorks 2015 Refrence Guide%2C Sdc Publications.&f=false (accessed Dec. 17, 2021).
[26] T. D. Canonsburg, “ANSYS Fluent Tutorial Guide,” vol. 15317, no. November, pp. 724–746, 2013.
[27] Y. Tominaga et al., “AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings,” J. Wind Eng. Ind. Aerodyn., vol. 96, no. 10–11, pp. 1749–1761, 2008, doi: 10.1016/j.jweia.2008.02.058.
[28] Q. Li, J. Fang, A. Jeary, and D. Paterson, “Computation of wind loading on buildings by CFD,” Hong Kong Institution of Engineers, Transactions, 1998. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Computation+of+Wind+Loading+on+Buildings+by+CFD&btnG= (accessed Dec. 17, 2021).
[29] LAUNDER and B. E., “Modeling flow-induced oscillations in turbulent flow around a square cylinder,” ASME Fluid Eng. Conf. 1993, 1993, Accessed: Dec. 17, 2021. [Online]. Available: https://ci.nii.ac.jp/naid/80007747037.
[30] M. Yahyai, A. S. Daryan, S. M. Mirtaheri, and M. Ziaei, “Wind Effect on Milad Tower Using Computational,” 2009.
[31] S. Huang, Q. S. Li, and S. Xu, “Numerical evaluation of wind effects on a tall steel building by CFD,” J. Constr. Steel Res., vol. 63, no. 5, pp. 612–627, May 2007, doi: 10.1016/J.JCSR.2006.06.033.
[32] “Goldberg, D. (1989). “Genetic Algorithms in Search.... - Google Scholar.” https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Goldberg%2C+D.+%281989%29.+“Genetic+Algorithms+in+Search.+Optimization+and+Machine+Learning.&btnG= (accessed Dec. 17, 2021).
[33] “Davis, L. (1991). Handbook of Genetic Algorithms,... - Google Scholar.” https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Davis%2C+L.+%281991%29.+Handbook+of+Genetic+Algorithms%2C+Van+Nostrand+Reinhold&btnG= (accessed Dec. 17, 2021).
[34] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002, doi: 10.1109/4235.996017.
[35] S. Jung, J. Ghaboussi, and S.-D. Kwon, “Estimation of Aeroelastic Parameters of Bridge Decks Using Neural Networks,” J. Eng. Mech., vol. 130, no. 11, pp. 1356–1364, Nov. 2004, doi: 10.1061/(ASCE)0733-9399(2004)130:11(1356).
[36] T. Wu and A. Kareem, “Modeling hysteretic nonlinear behavior of bridge aerodynamics via cellular automata nested neural network,” J. Wind Eng. Ind. Aerodyn., vol. 99, no. 4, pp. 378–388, Apr. 2011, doi: 10.1016/J.JWEIA.2010.12.011.
[37] C. Lee, J. Kim, D. Babcock, and R. Goodman, “Application of neural networks to turbulence control for drag reduction,” Phys. Fluids, vol. 9, no. 6, p. 1740, Jun. 1998, doi: 10.1063/1.869290.
[38] P. Wasserman, “Advanced methods in neural computing,” 1993, Accessed: Dec. 17, 2021. [Online]. Available: https://dl.acm.org/doi/abs/10.5555/562821.
[39] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, Jan. 1989, doi: 10.1016/0893-6080(89)90020-8. | ||
آمار تعداد مشاهده مقاله: 548 تعداد دریافت فایل اصل مقاله: 280 |