- محمد جهاندار لاشکی، پژمان رضائی، محمدمهدی فخاریان "ساختار تار عنکبوتی بهعنوان سطوح امپدانس بالا"، نشریهمدل سازی در مهندسی، دوره 12، شماره 38، پاییز 1393، صفحه 82-75.
- زهرا موسوی راضی، پژمان رضایی و نیلوفر بهادری "آنتن میکرواستریپ جهتدار با استفاده از رولایه سطوح انتخابگر فرکانسی در محفظه تشدید فبری پرو" ، نشریه مدل سازی در مهندسی، دوره 13، شماره 42، پاییز 1394، صفحه 25-17.
- علیرضا شریفی و جعفر خلیل پور "افزایش بهره و پهنای باند آنتن پچ با به کارگیری رولایه فراماده"، نشریه الکترومغناطیس کاربردی، دوره 3، شماره 3، تابستان 1394، صفحه 44-
- Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies", Science, Vol. 314, No. 5801, pp. 977–980, 2006.
- A. Cummer, B.I. Popa, D. Schurig, D. R. Smith, and J. Pendry, "Full-wave simulations of electromagnetic cloaking structures", Physical Review E, Vol. 74, No. 3, 2006, pp. 036621.
- Liu, J. Chen, Z. Zhou, Z. Yi, and X. Ye, "Tunable absorption enhancement in electric split-ring resonators-shaped graphene arrays", Materials Research Express, Vol. 5, No. 4, 2018, pp. 045802.
- Zeng, X. Chen, Z. Yi, Y. Yi, and X. Xu, "Fabrication of pn heterostructure ZnO/Si moth-eye structures: antireflection, enhanced charge separation and photocatalytic properties", Applied Surface Science, Vol. 441, 2018, pp. 40–48.
- L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, "Design of a broadband tunable terahertz metamaterial absorber based on complementary structural grapheme", Materials, Vol. 11, No. 4, 2018, pp. 540.
- Yi, X. Li, X. Xu, X Chen, X. Ye, and Y. Yi, "Nanostrip-induced high tenability multipolar Fano resonances in a Au ring-strip nanosystem", Nanomaterials, Vol. 8:0568, 2018.
- Vakil and N. Engheta, "Transformation optics using graphene", Science, Vol. 332, No. 6035, 2011, pp. 1291-1294.
- Farmani, A. Mir, and Z. Sharifpour "Broadly tunable and bidirectional terahertz grapheme plasmonic switch based on enhanced Goos-Hanchen effect" Applied Surface Science, Vol. 453, 2018, pp. 358–364.
- Li, J. Niu, and G. Wang "Dual-band, polarization-insensitive metamaterial perfect absorber based on monolayer graphene in the mid-infrared range" Results in Physics, Vol. 13, 2019, pp. 102313.
- Huang, G. Niu, Z. Yi, X. Chen, Z. Zhou, and X. Ye, "High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk grapheme metamaterials", Physica Scripta, Vol. 94, No. 8, 2019, pp. 085805.
- L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, "Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle", Optics Communications, Vol. 415, 2018, pp. 194–201.
- Li and Y. Cheng, "Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure", Optics Communications. Vol. 462, 2020, pp. 125265.
- Luo and Y. Cheng, "Thermally tunable terahertz metasurface absorber based on all dielectric indium antimonide resonator structure", Optical Materials, Vol. 102, 2020, pp. 109801.
- Chen, Y. Cheng, and H. Luo, "A broadband tunable terahertz metamaterial absorber based on single-layer complementary gammadion-shaped grapheme", Materials. Vol. 13, 2020, pp. 860.
- K. Ghosh, V. S. Yadav, S. Das, and S. Bhattacharyya, "Tunable graphene based metasurface for polarization-independent broadband absorption in lower mid infrared (MIR) range", IEEE Transactions on Electromagnetic Compatibility, Vol. 62, pp. 346–354, 2020.
- I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber", Physical Review Letters, Vol. 100, 2008, pp. 207402.
- Bhattacharyya, S. Ghosh, D. Chaurasiya, and K. V. Srivastava, "Wide-angle broadband microwave metamaterial absorber with octave bandwidth", IET Microw Antennas Propag. Vol. 9, 2015, pp. 1160–1166.
- X. Yan, and J. S. Li, "Tunable all-graphene-dielectric single-band terahertz wave absorber", Journal of Physics D: Applied Physics, Vol. 52, 2019, pp. 275102.
- A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman, "Strong coupling of molecular and mid-infrared perfect absorber resonances", IEEE Photonics Technology Letters, Vol. 24, 2012, pp. 31–33.
- Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: design, fabrication and characterization", Optics Express, Vol. 16, 2008, pp. 7181–7188.
- Fang, X. Shi, C. Liu, X. Zhai, H. Li, and L. Wang, "Single-and dual-band convertible terahertz absorber based on bulk Dirac semimetal", Optics Communications, Vol. 462, 2020, pp. 125333.
- Zhong, X. Jiang, X. Zhu, J. Chen, S. Wu, J. Zhang, J. Zhong, K. Yang, L. Zeng, S. Huang, Y. Chen, J. Zhang, L. Liang, Y. Xin, and H. Chen, "Design and measurement of a single-dual-band tunable metamaterial absorber in the terahertz band", Physica E, Vol. 124, 2020, pp. 114343.
- Wu, X. Liu, and Z. Huang, "Broadband light absorption with doped silicon for the terahertz frequency", Optics & Laser Technology, Vol. 119, 2019, pp. 105657.
- Song, M. Jiang, Y. Deng, and A. Chen, "Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material", Optics Communications, Vol. 464, 2020, pp. 125494.
- P. Xu, J. Y. Wang, R. C. Yang, J. P. Tian, X. W. Chen, and W. M. Zhang, "Frequency-tunable metamaterial absorber with three bands", Optik, Vol. 172, 2018, pp. 1057–1063.
- Ma, S. B. Liu, B. R. Bian, X. K. Kong, H. F. Zhang, Z. W. Mao, and B. Y. Wang, "Novel three-band microwave metamaterial absorber", Journal of Electromagnetic Waves and Applications, Vol. 28, 2014, pp. 1478–1486.
- R. Hu, L. Wang, B. G. Quan, X. L. Xu, Z. Li, Z. A. Wu, and X. C. Pan, "Design of a polarization insensitive multiband terahertz metamaterial absorber", Journal of Physics D: Applied Physics, Vol. 46, 2013, pp. 195103.
- X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, "Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure", Scientific Reports, Vol. 7, 2017, pp. 41373.
- D. Xu, J. X. Li, A. X. Zhang, and Q. Chen, "Tunable multi-band terahertz absorber using a single-layer square graphene ring structure with T-shaped graphene strips", Optics Express, Vol. 28, 2020, pp. 11482–11492.
- Zamzam, P. Rezaei, and S. A. Khatami, "Quad-band polarization-insensitive metamaterial perfect absorber based on bilayer graphene metasurface", Physica E, Vol. 128, 2021, pp. 114621.
- X. Wang, G. Z. Wang, L L. Wang, and X. Zhai, "Design of a five-band terahertz absorber based on three nested split-ring resonators", IEEE Photonics Technology Letters, Vol. 28, No. 3, 2015, pp. 307–310.
- J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, Y. H. Kim, and Y. P. Lee, "Dual broadband metamaterial absorber", Optics Express, Vol. 23, 2015, pp. 3861–3868.
- معین نوایی و پژمان رضائی "فیلتر فراپهن باند با استفاده از روش امپدانس پله ای با بهبود افت خارج باند"، نشریهمدل سازی در مهندسی، دوره 18، شماره 61، تابستان 1399، صفحه 19-13.
- K. Patel, V. Sorathiya, Z. Sbeah, S. Lavadiya, T. K. Nguyen, and V. Dhasarathan, "Graphene-based tunable infrared multi band absorber", Optics Communications, Vol. 474, 2020, pp. 126109.
- Yan, M. Meng, J. Li, and X. Li "Graphene-Assisted Narrow Bandwidth Dual-Band Tunable Terahertz Metamaterial Absorber", Frontiers in Physics, Vol. 8, 2020.
- Zhong, "Design and measurement of a narrow band metamaterial absorber in terahertz range", Optical Materials, Vol. 100, 2020, pp. 109712.
- Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and P. K. Chu, "Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing", Optics Express, Vol. 26, No. 7, 2018, pp. 9039–9049.
- Aghaee and A.A. Orouji, "Reconfigurable multi-band, graphene-based THz absorber: circuit model approach", Results in Physics, Vol. 16, 2020, 102855.
- S. Arezoomand, F. B. Zarrabi, S. Heydari, and N. P. Gandgi, "Independent polarization and multi-band THz absorber base on Jerusalem cross", Optics Communications, Vol. 352, 2015, pp. 121–126.
- X. Wang, Y. He, P. Lou, W. Q. Huang, and F. Pi, "Penta-band terahertz light absorber using five localized resonance responses of three patterned resonators", Results in Physics, Vol. 16, 2020, pp. 102930.
|