
تعداد نشریات | 21 |
تعداد شمارهها | 607 |
تعداد مقالات | 8,996 |
تعداد مشاهده مقاله | 67,015,791 |
تعداد دریافت فایل اصل مقاله | 7,604,689 |
Fractional variational iteration method for solving two-dimensional Stefan problem with fractional order derivative | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 174، دوره 13، شماره 2، مهر 2022، صفحه 2167-2174 اصل مقاله (827.45 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.6561 | ||
نویسندگان | ||
Adnan Yassean Nama1، 2؛ Fadhel S. Fadhel* 3 | ||
1Department of Mathematics, College of Education for Pure Science, Ibn Al- Haitham, University of Baghdad, Baghdad, Iraq | ||
2Department of Mathematics, College of Education for Pure Science, University of Thi-Qar, Thi-Qar, Iraq | ||
3Department of Mathematics and Computer Applications, College of Science, Al-Nahrian University, Baghdad, Iraq | ||
تاریخ دریافت: 23 بهمن 1400، تاریخ بازنگری: 30 بهمن 1400، تاریخ پذیرش: 25 اسفند 1400 | ||
چکیده | ||
In this paper, we present a mathematical model of Stefan problem, this model is ice melting problem where the interface of solid/liquid moves along the y-axis, which is including time fractional derivative in Jumarie sense. The obtained solution of this problem is an approximate solution using fractional variational iteration method. Graphically the results will be compared with an exact solution to the integer order derivatives. | ||
کلیدواژهها | ||
Fractional variational iteration method؛ Two-dimensional problem؛ Moving boundary value problem؛ Modified Remann-Lioville fractional derivative؛ Stefan problem؛ Parabolic equation | ||
مراجع | ||
[1] S.G. Bankoff, Heat conduction or diffusion with change of phase, Adv. Chem. Engin. 5 (1964), 75–150. [2] H. Capart, M. Bellal and D.L. Young, Self-similar evolution of semi-infinite alluvial channels with moving boundaries, J. Sedimentary Res. 77 (2007), no. 1, 13–22.[3] J. Crank and J. Crank, Free and moving boundary problems, Oxford University Press, USA, 1984. [4] M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys. 228 (2009), no. 20, 7792–7804. [5] B.A. Finlayson, The method of weighted residuals and variational principles, volume 87 of Mathematics in Scienceand Engineering, SIAM, 1972. [6] R.S. Gupta and N.C. Banik, Constrained integral method for solving moving boundary problems, Comput. Meth. Appl. Mmech. Engin. 67 (1988), no. 2, 211–221. [7] R.S. Gupta and N.C. Banik. Solution of a weakly two-dimensional melting problem by an approximate method, J. Comput. Appl. Math. 31 (1990), no. 3, 351–356. [8] Z. Hammouch and T. Mekkaoui. Travelling-wave solutions for some fractional partial differential equation by means of generalized trigonometry functions. Int. J. Appl. Math. Res. 1 (2012), no. 1, 206–212. [9] J.H. He. Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Meth. Appl. Mech. Engin. 167 (1998), no. 1-2, 57–68. [10] Y.C. Hon and T. Wei, The method of fundamental solution for solving multidimensional inverse heat conduction problems, CMES Comput. Model. Eng. Sci. 7 (2005), no. 2, 119–132. [11] M. Inokuti, H. Sekine and T. Mura, General use of the Lagrange multiplier in nonlinear mathematical physics, Var. Method Mech. Solids 33 (1978), no. 5, 156–162. [12] G. Jumarie, Table of some basic fractional calculus formulae derived from a modified Riemann–Liouville derivative for non-differentiable functions, Appl. Math. Lett. 22 (2009), no. 3, 378–385. [13] G. Jumarie, An approach via fractional analysis to non-linearity induced by coarse-graining in space, Nonlinear Anal. Real World Appl. 11 (2010), no. 1, 535–546. [14] G. Jumarie, On the fractional solution of the equation f(x + y) = f(x)f(y) and its application to fractional Laplace’s transform, Appl. Math. Comput. 219 (2012), no. 4, 1625–1643. [15] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. [16] D. Lesnic and L. Elliott, The decomposition approach to inverse heat conduction, J. Math. Anal. Appl. 232 (1999), no. 1, 82–98. [17] J.C. Muehlbauer, Heat conduction with freezing or melting, Appl. Mech. Rev. 18 (1965), 951. [18] Z. Odibat and S. Momani, A generalized differential transform method for linear partial differential equations of fractional order, Appl. Math. Lett. 21 (2008), no. 2, 194–199. [19] K.N. Rai and S. Das, Numerical solution of a moving-boundary problem with variable latent heat, Int. J. Heat Mass Transfer 52 (2009), no. 7-8, 1913–1917. [20] Rajeev, Homotopy perturbation method for a Stefan problem with variable latent heat. Thermal Sci. 18 (2014), no. 2, 391–398. [21] H. Rasmussen, An approximate method for solving two-dimensional Stefan problems, Lett. Heat Mass Transfer 4 (1977), no. 4, 273–277. [22] J.J. Trujillo, E. Scalas, K. Diethelm and D. Baleanu. Fractional calculus: Models and numerical methods, World Scientific, 2016. [23] V.R. Voller, J.B. Swenson, W. Kimn and C. Paola, An enthalpy method for moving boundary problems on the earth’s surface, Int. J. Numerical Meth. Heat Fluid Flow 16 (2006), no. 5, 641–654. [24] S. Wang and P. Perdikaris. Deep learning of free boundary and Stefan problems, J. Comput. Phys. 428 (2021), 109914. [25] H. Wang and T.C. Xia, The fractional supertrace identity and its application to the super Jaulent–Miodek hierarchy, Commun. Nonlinear Sci. Numerical Simul. 18 (2013), no. 10, 2859–2867. [26] G.W. Wang, X.Q. Liu and Y.Y. Zhang, Lie symmetry analysis to the time fractional generalized fifth-order KdV equation, Commun. Nonlinear Sci. Numerical Simul. 18 (2013), no. 9, 2321–2326. [27] B.J. West, M. Bologna and P. Grigolini, Physics of fractal operators, Springer, New York, 2003. | ||
آمار تعداد مشاهده مقاله: 43,974 تعداد دریافت فایل اصل مقاله: 364 |