تعداد نشریات | 21 |
تعداد شمارهها | 603 |
تعداد مقالات | 8,909 |
تعداد مشاهده مقاله | 66,849,281 |
تعداد دریافت فایل اصل مقاله | 7,447,602 |
Investigation of Particle Resuspension from a Garment using Different Turbulence Dispersion Models | ||
Journal of Heat and Mass Transfer Research | ||
مقاله 5، دوره 9، شماره 2 - شماره پیاپی 18، بهمن 2022، صفحه 141-154 اصل مقاله (944.67 K) | ||
نوع مقاله: Full Length Research Article | ||
شناسه دیجیتال (DOI): 10.22075/jhmtr.2022.25113.1359 | ||
نویسندگان | ||
Hamidreza Kharinezhad Arani؛ Ali Jafarian* ؛ Jamal Darand | ||
Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran | ||
تاریخ دریافت: 13 آبان 1400، تاریخ بازنگری: 28 مرداد 1401، تاریخ پذیرش: 03 شهریور 1401 | ||
چکیده | ||
One of the most important sources of aerosol production in a controlled space is the human. The flow around the individual and the particles on the garment play an essential role in aerosol distribution in the environment. Such spaces are simulated from a Lagrangian or Eulerian point of view. In this research, particle resuspension from a user’s garment under horizontal and vertical unidirectional systems was studied. For this purpose, a computer program was developed and used for examination of the impacts of different particle turbulence dispersion models, such as Discrete Random Walk, in a controlled space. Moreover, the effects of flow direction, velocity, and particle density on the probability of resuspension of particles with different diameters were investigated. The results demonstrated that the vertical unidirectional system had advantages over its horizontal variant, and that increased flow velocity provided positive feedback in the vertical system but negative feedback in the horizontal one. In the horizontal system, the resuspension probability for the sizes of 5 and 0.5 microns has increased by 177 and 355 percent, respectively, compared to the vertical system. It is worth noting that the results of the isotropic and non-isotropic models for particles size below 5 microns were quite the same. For the particles size over 5 microns, the maximum percentage discrepancy of 138 in resuspension probability between the non-isotropic and isotropic models is obtained. | ||
کلیدواژهها | ||
Particle turbulence dispersion model؛ Particulate matter؛ Resuspension؛ Controlled space؛ Eulerian-Lagrangian approach؛ Resuspension probability | ||
عنوان مقاله [English] | ||
بررسی برخاست ذرات از لباس با استفاده از مدلهای پخش آشفتگی | ||
چکیده [English] | ||
کاربر، یکی از مهمترین منابع تولید ذرات در یک فضای کنترل شده است. جریان اطراف فرد و ذرات روی لباس او نقش اساسی در توزیع ذرات در محیط دارند. چنین فضاهایی از دیدگاه لاگرانژی یا اویلری شبیه سازی شده اند. در این تحقیق، برخاست مجدد ذرات از لباس کاربر تحت سیستم های یک طرفه افقی وعمودی مورد بررسی قرار گرفت. برای این منظور، یک برنامه کامپیوتری برای بررسی اثرات مدلهای مختلف پخش آشفتگی ذرات، مانند قدمزنی تصادفی گسسته، در یک فضای کنترلشده توسعه و مورد استفاده قرار گرفت. علاوه بر این، اثرات جهت جریان، سرعت و چگالی ذرات بر احتمال برخاست مجدد ذرات با قطرهای مختلف مورد بررسی قرار گرفت. نتایج نشان میدهد سیستم تکجهتهی عمودی نسبت به نوع افقی آن برتری دارد و افزایش سرعت جریان در سیستم عمودی تأثیر مثبت و برای افقی اثر منفی برای سطح تمیزی دارد. احتمال برخاست سیستم تکجهته ی عمودی برای ذرات 5 و 0.5 میکرون به ترتیب 177 و 355 درصد نسبت به سیستم افقی افزایش یافته است. شایان ذکر است که نتایج مدلهای همسانگرد و غیرهمسانگرد برای اندازه ذرات زیر 5 میکرون کاملا یکسان است.برای ذرات بالای 5 میکرون حداکثر اختلاف بین مدل همسانگرد ناهمسانگرد 138 درصد است. | ||
کلیدواژهها [English] | ||
مدل پخش آشفتگی ذرات, ذرات, برخاست, فضای کنترلشده, دیدگاه اویلر-لاگرانژی, احتمال برخاست | ||
مراجع | ||
[1] Mouritz, A.P., Gellert, E., Burchill, P. and Challis, K., 2001. Review of advanced composite structures for naval ships and submarines. Composite structures, 53(1), pp.21-42.
[2] Zhang, X., Ahmadi, G., Qian, J., & Ferro, A. 2008. Particle detachment, resuspension and transport due to human walking in indoor environments. Journal of Adhesion Science and Technology, 22(5-6), pp.591-621.
[3] Tian, L., & Ahmadi, G. 2007. Particle deposition in turbulent duct flows—comparisons of different model predictions. Journal of Aerosol Science, 38(4), pp.377-397.
[4] Gao, N., Niu, J., He, Q., Zhu, T., & Wu, J. 2012. Using RANS turbulence models and Lagrangian approach to predict particle deposition in turbulent channel flows. Building and Environment, 48, pp.206-214.
[5] Mito, Y., & Hanratty, T. J. 2002. Use of a modified Langevin equation to describe turbulent dispersion of fluid particles in a channel flow. Flow, turbulence and combustion, 68(1), pp.1-26.
[6] Kang, Y., Wang, Y., & Zhong, K. 2011. Effects of supply air temperature and inlet location on particle dispersion in displacement ventilation rooms. Particuology, 9(6), pp.619-625.
[7] Kubota, Y., Hall, J. W., & Higuchi, H. 2009. An experimental investigation of the flowfield and dust resuspension due to idealized human walking. Journal of fluids engineering, 131(8).
[8] Khalifa, H. E., & Elhadidi, B. 2007. Particle levitation due to a uniformly descending flat object. Aerosol science and technology, 41(1), pp.33-42.
[9] Zheng, S., Du, W., Zhao, L., & Zhang, J. 2018. Simulation of Particle Resuspension Caused by Footsteps. Environmental Processes, 5(4), pp.919-930.
[10] Boulbair, A., Benabed, A., Janssens, B., Limam, K., & Bosschaerts, W. 2022. Numerical study of the human walking-induced fine particles resuspension. Building and Environment, 216, p.109050.
[11] Sun, Z., Zheng, S., Fu, Y., & Chai, M. 2022. Characteristics of indoor human-induced particle resuspension under different ventilation conditions. Indoor and Built Environment, p.1420326X221084032.
[12] Sajadi, B., Saidi, M. H., Ahmadi, G., Kenney, S. M., & Taylor, J. 2013. On the induced airflow and particle resuspension due to a falling disk. Particulate Science and Technology, 31(2), pp.190-198.
[13] Qian, J., Peccia, J., & Ferro, A. R. 2014. Walking-induced particle resuspension in indoor environments. Atmospheric Environment, 89, pp.464-481.
[14] Tsai, C. S. J. 2015. Contamination and release of nanomaterials associated with the use of personal protective clothing. Annals of Occupational Hygiene, 59(4), pp.491-503.
[15] Aracena, K. D. L. Á. V., Uñac, R. O., Ippolito, I., & Vidales, A. M. 2020. Movement initiation of millimeter particles on a rotating rough surface: The role of adhesion. Particuology, 53, pp.92-99.
[16] Benabed, A., Boulbair, A., & Limam, K. 2020. Experimental study of the human walking-induced fine and ultrafine particle resuspension in a test chamber. Building and Environment, 171, p.106655.
[17] Habchi, C., Ghali, K., & Ghaddar, N. 2016. Coupling CFD and analytical modeling for investigation of monolayer particle resuspension by transient flows. Building and Environment, 105, pp.1-12.
[18] Kazzaz, M., Habchi, C., Ghali, K., Ghaddar, N., Alotaibi, S., & Chakroun, W. 2017. Micro-particle indoor resuspension under periodic airflows: a numerical-analytical study and experimentations. Building and Environment, 123, pp.299-314.
[19] Al Assaad, D., Yang, S., & Licina, D. 2021. Particle release and transport from human skin and clothing: A CFD modeling methodology. Indoor air, 31(5), pp.1377-1390.
[20] Ren, J., Tang, M., & Novoselac, A. 2022. Experimental study to quantify airborne particle deposition onto and resuspension from clothing using a fluorescent-tracking method. Building and environment, 209, p.108580.
[21] Whyte, W. 2010. Cleanroom technology: fundamentals of design, testing and operation. John Wiley & Sons.
[22] Zhang, Z., & Chen, Q. 2007. Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. Atmospheric environment, 41(25), pp.5236-5248.
[23] Pourfarzaneh, A., Jafarian, A., & Kharinezhad Arani, H. 2019. Numerical study of particulate turbulent flow to investigate recovery period in cleanrooms. Scientia Iranica, 26(1), pp.331-345.
[24] Khajenoori, M., & Haghighi Asl, A. 2018. Two-dimensional Simulation of Mass Transfer and Nano-Particle Deposition of Cigarette Smoke in a Human Airway. Journal of Heat and Mass Transfer Research, 5(1), pp.79-85.
[25] Ounis, H., Ahmadi, G., & McLaughlin, J. B. 1991. Dispersion and deposition of Brownian particles from point sources in a simulated turbulent channel flow. Journal of Colloid and Interface Science, 147(1), pp.233-250.
[26] Kao, H. M., Chang, T. J., Hsieh, Y. F., Wang, C. H., & Hsieh, C. I. 2009. Comparison of airflow and particulate matter transport in multi-room buildings for different natural ventilation patterns. Energy and Buildings, 41(9), pp.966-974.
[27] Mahdavimanesh, M., Noghrehabadi, A. R., Behbahaninejad, M., Ahmadi, G., & Dehghanian, M. 2013. Lagrangian particle tracking: model development. Life Science Journal, 10(8s), pp.34-41.
[28] Vahedi, S. M., Parvaz, F., Rafee, R., & Khandan Bakavoli, M. 2018. Computational fluid dynamics simulation of the flow patterns and performance of conventional and dual-cone gas-particle cyclones. Journal of Heat and Mass Transfer Research, 5(1), pp.27-38.
[29] Zhang, P., Roberts, R. M., & Bénard, A. 2012. Computational guidelines and an empirical model for particle deposition in curved pipes using an Eulerian-Lagrangian approach. Journal of Aerosol Science, 53, pp.1-20.
[30] Kraichnan, R. H. 1970. Diffusion by a random velocity field. The physics of fluids, 13(1), pp.22-31.
[31] Sajjadi, H., Salmanzadeh, M., Ahmadi, G., & Jafari, S. 2016. Simulations of indoor airflow and particle dispersion and deposition by the lattice Boltzmann method using LES and RANS approaches. Building and Environment, 102, pp.1-12.
[32] Berlemont, A., Desjonqueres, P., & Gouesbet, G. 1990. Particle Lagrangian simulation in turbulent flows. International Journal of Multiphase Flow, 16(1), pp.19-34.
[33] Zhang, X., Ahmadi, G., Qian, J., & Ferro, A. 2008. Particle detachment, resuspension and transport due to human walking in indoor environments. Journal of Adhesion Science and Technology, 22(5-6), pp.591-621.
[34] Pozorski, J., & Minier, J. P. 1998. On the Lagrangian turbulent dispersion models based on the Langevin equation. International Journal of Multiphase Flow, 24(6), pp.913-945.
[35] Johnson, K. L., Kendall, K., & Roberts, A. 1971. Surface energy and the contact of elastic solids. Proceedings of the royal society of London. A. mathematical and physical sciences, 324(1558), pp.301-313.
[36] Soltani, M., & Ahmadi, G. 1994. On particle adhesion and removal mechanisms in turbulent flows. Journal of Adhesion Science and Technology, 8(7), pp.763-785.
[37] Qian, J. 2007. Particle resuspension via human activity. Ph. D. Thesis. | ||
آمار تعداد مشاهده مقاله: 357 تعداد دریافت فایل اصل مقاله: 187 |