تعداد نشریات | 21 |
تعداد شمارهها | 603 |
تعداد مقالات | 8,937 |
تعداد مشاهده مقاله | 66,888,554 |
تعداد دریافت فایل اصل مقاله | 7,487,912 |
بررسی تجربی مقاومت و جذب انرژی بتن مسلحشده با الیاف هیبریدی تحت بارگذاری ضربهای سرعتکم | ||
مهندسی زیر ساخت های حمل و نقل | ||
دوره 8، شماره 4 - شماره پیاپی 32، اسفند 1401، صفحه 117-130 اصل مقاله (2.21 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/jtie.2022.26434.1594 | ||
نویسندگان | ||
عباس صادقیان1؛ طالب مرادی شقاقی2؛ یعقوب محمدی* 3؛ حسین تقی پور4 | ||
1دانشجوی دکتری گروه مهندسی عمران، واحد تبریز، دانشگاه آزاد اسلامی، تبریز | ||
2استادیار، گروه مهندسی عمران، واحد تبریز، دانشگاه آزاد اسلامی، تبریز | ||
3استاد، گروه مهندسی عمران، دانشگاه محقق اردبیلی، اردبیل | ||
4استادیار، دانشکده مهندسی مکانیک، دانشگاه ولایت، ایرانشهر | ||
تاریخ دریافت: 08 اسفند 1400، تاریخ بازنگری: 28 مهر 1401، تاریخ پذیرش: 05 آذر 1401 | ||
چکیده | ||
استفاده از بتن مسلحشده با الیاف در صنایع مختلف به دلیل خواص مکانیکی مطلوب، سبکی سازه، ظرفیت جذب انرژی خوب و مقاومت اولیه زیاد تحت بارهای ضربهای و همچنین نسل جدید بتن الیافی با شکلپذیری عالی و قابلیت کنترل ترک در حال توسعه میباشد. با توجه به اینکه بتن الیافی در معرض ضربه و بارهای شدید، به دلیل انعطافپذیری، عملکرد بهتری از خود نشان میدهد، در این مطالعه، میزان جذب انرژی و مقاومت اولیه بتن تقویتشده با الیاف فورتا، بازالت و بارچیپ، تحت بارگذاری ضربهای نفوذی مورد بررسی قرار گرفت. جهت بررسی تأثیر درصد الیاف بر خواص ضربهپذیری، هشت نمونه بتن مسلحشده با الیاف هیبریدی تحت آزمون تجربی قرار گرفت. همچنین، سطح شکست و چگونگی چسبندگی الیاف به بتن مسلحشده با الیاف، به همراه مودهای تخریب، ارزیابی شد. نتایج نشان داد که میزان مقاومت اولیه و جذب انرژی در بتن مسلحشده با الیاف هیبریدی به ترتیب 8/292 درصد و 3/212 درصد در مقایسه با بتن معمولی افزایش داشته است. با بررسی سطح شکست نمونهها مشخص شد که چسبندگی بین دو الیاف بازالت و فورتا به بتن زمینه بسیار مطلوب است؛ اما جدایش بین الیاف بارچیپ و بتن زیاد است و کارایی این الیاف در تقویت بتن را کاهش میدهد. | ||
کلیدواژهها | ||
بتن الیافی؛ بتن مسلحشده؛ جذب انرژی؛ بار ضربهای؛ مقاومت اولیه | ||
عنوان مقاله [English] | ||
Experimental investigation hybrid-fiber reinforced concrete under drop weight test | ||
نویسندگان [English] | ||
Abbas Sadeghian1؛ Taleb Moradi shaghaghi2؛ Yaghoub Mohammadi3؛ Hossein Taghipoor4 | ||
1Department of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran | ||
2Department of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran | ||
3Department of Civil Engineering, University of Mohaghegh Ardabili, Ardabil, Iran | ||
4Faculty of velayat university | ||
چکیده [English] | ||
The use of fiber-reinforced concrete in various industries is developing due to the desired mechanical properties, light weight of the structure, good energy absorption capacity and high initial strength under impact loads. a new generation of fiber-reinforced concrete with excellent ductility and exceptional crack control capability. Although fibre concrete is suitable for structures exposed to impacts and other extreme loads, In this study, the energy absorption and initial strength of reinforced concrete with Forta, basalt and barchip fibers under penetration impact loading were investigated. To investigate the effect of fiber percentage on impact properties, 8 specimens were subjected to experimental tests hybrid groups. Also, the fracture surface and the adhesion of fibers to fiber-reinforced concrete with degradation modes were evaluated. The results showed that the initial strength and energy absorption in hybrid-fiber reinforced concrete increased by 292.8% and 212.3%, respectively, compared to Net conceret. Also, by examining the fracture surface of the specimens, it was found that the adhesion between the two basalt and forta fibers to the base concrete is very desirable. However, the separation between barchip fibers and concrete is high and reduces the efficiency of these fibers in reinforcing concrete. | ||
کلیدواژهها [English] | ||
Fiber concrete, energy absorption, impact, initial strength, reinforced concrete | ||
مراجع | ||
خیرالدین، ع.، وحیدپور، م. و بینش، م. 1399. "بررسی رفتار ضربهای بتنهای الیافی ماکروسنتتیک با دورپیچ کامپوزیت GFRP". مصالح و سازههای بتنی، 5(1): 200-217.
شربتدار، م. ک.، شایانی، ا. و خیرالدین، ع. 1397. "بررسی آزمایشگاهی رفتار دیوار برشی کوپله با استفاده از بتن الیافی توانمند HPFRCC در تیر رابط با آرایش آرماتورگذاری متفاوت". مهندسی عمران شریف، 34(2.2): 3-13.
مبحث 9 مقررات ملی ساختمان. 1399. "طرح و اجرای ساختمانهای بتن آرمه".
Adesina, A. 2021. “Performance of cementitious composites reinforced with chopped basalt fibres–An overview”. Constr. Build. Mater., 266: 120970.
Alberti, M. G., Enfedaque, A. and Gálvez, J. C. 2017. “Fibre reinforced concrete with a combination of polyolefin and steel-hooked fibres”. Composite Struct., 171: 317-325.
Arisoy, B. and Wu, H. C. 2008. “Material characteristics of high performance lightweight concrete reinforced with PVA”. Constr. Build. Mater., 22(4): 635-645.
Aslani, F. and Nejadi, S. 2013. “Self-compacting concrete incorporating steel and polypropylene fibers: Compressive and tensile strengths, moduli of elasticity and rupture, compressive stress–strain curve, and energy dissipated under compression”. Composites Part B: Eng., 53: 121-133.
Bencardino, F., Rizzuti, L., Spadea, G. and Swamy, R. N. 2010. “Experimental evaluation of fiber reinforced concrete fracture properties”. Composites Part B: Eng., 41(1): 17-24.
Babaie, R., Abolfazli, M. and Fahimifar, A. 2019. J. Mech. Behav. Mater., 28(1): 119-134.
Çelik, Z. and Bingöl, A. F. 2020. “Fracture properties and impact resistance of self-compacting fiber reinforced concrete (SCFRC)”. Mater. Struct., 53(3): 1-16.
Flores-Johnson, E. A. and Li, Q. M. 2012. “Structural behaviour of composite sandwich panels with plain and fibre-reinforced foamed concrete cores and corrugated steel faces”. Composite Struct., 94(5): 1555-1563.
Falliano, D., De Domenico, D., Ricciardi, G. and Gugliandolo, E. 2019. “Compressive and flexural strength of fiber-reinforced foamed concrete: Effect of fiber content, curing conditions and dry density”. Constr. Build. Mater., 198: 479-493.
Fragassa, C., de Camargo, F. V., Pavlovic, A. and Minak, G. 2019. “Explicit numerical modeling assessment of basalt reinforced composites for low-velocity impact”. Composites Part B: Eng., 163: 522-535.
Fu, Q., Niu, D., Zhang, J., Huang, D., Wang, Y., Hong, M. and Zhang, L. 2018. “Dynamic compressive mechanical behaviour and modelling of basalt–polypropylene fibre-reinforced concrete”. Arch. Civ. Mech. Eng., 18(3): 914-927.
Guerini, V., Conforti, A., Plizzari, G. and Kawashima, S. 2018. “Influence of steel and macro-synthetic fibers on concrete properties”. Fibers, 6(3): 47.
Gautam, A. and Awasthi, A. 2018. “Use of FORTA-FERRO fiber in structural concrete mix: A review”. Int. Res. J. Eng. Technol, 5(05).
Hasan-Nattaj, F. and Nematzadeh, M. 2017. “The effect of forta-ferro and steel fibers on mechanical properties of high-strength concrete with and without silica fume and nano-silica”. Constr. Build. Mater., 137: 557-572.
Jovičić, V., Šušteršič, J. and Vukelič, Ž. 2009. “The application of fibre reinforced shotcrete as primary support for a tunnel in flysch”. Tunn. Undergr. Sp. Tech., 24(6): 723-730.
Kandemir, A., Pozegic, T. R., Hamerton, I., Eichhorn, S. J. and Longana, M. L. 2020. “Characterisation of natural fibres for sustainable discontinuous fibre composite materials”. Mater., 13(9): 2129.
Moghadasi, M., Marsono, A. K. and Mohammadyan-Yasouj, S. E. 2017. “A study on rotational behaviour of a new industrialised building system connection”. Steel Composite Struct., 25(2): 245-255.
Mohammadyan-Yasouj, S. E., Marsono, A. K., Abdullah, R. and Moghadasi, M. 2015. “Wide beam shear behavior with diverse types of reinforcement”. ACI Struct. J., 112(2): 199-208.
Mohammadyan-Yasouj, S. E., Ahangar, H. A., Oskoei, N. A., Shokravi, H., Koloor, S. S. R. and Petrů, M. 2021. “Experimental study on the effect of basalt fiber and sodium alginate in polymer concrete exposed to elevated temperature”. Processes, 9(3): 510.
Pareek, K. and Saha, P. 2019. “Basalt fiber and its composites: An overview”. Proceedings of National Conference on Advances in Structural Technologies (CoAST-2019), Vol. 1, p. 3.
Shokravi, H., Shokravi, H., Bakhary, N., Rahimian Koloor, S. S. and Petrů, M. 2020a. “A comparative study of the data-driven stochastic subspace methods for health monitoring of structures: A bridge case study”. Appl. Sci., 10(9): 3132.
Shokravi, H., Shokravi, H., Bakhary, N., Heidarrezaei, M., Rahimian Koloor, S. S. and Petrů, M. 2020b. “Vehicle-assisted techniques for health monitoring of bridges”. Sensors, 20(12): 3460.
Shokravi, H., Shokravi, H., Bakhary, N., Heidarrezaei, M., Rahimian Koloor, S. S. and Petrů, M. 2020c. “Application of the subspace-based methods in health monitoring of civil structures: A systematic review and meta-analysis”. Appl. Sci., 10(10): 3607.
Shokravi, H., Shokravi, H., Bakhary, N., Rahimian Koloor, S. S. and Petrů, M. 2020d. “Health monitoring of civil infrastructures by subspace system identification method: An overview”. Appl. Sci., 10(8): 2786.
Shimpi, N. G. 2017. “Biodegradable and biocompatible polymer composites: Processing, properties and applications”. Woodhead Publishing.
Wu, Y., Song, W., Zhao, W. and Tan, X. 2018. “An experimental study on dynamic mechanical properties of fiber-reinforced concrete under different strain rates”. Appl. Sci., 8(10): 1904.
Zhou, H., Jia, B., Huang, H. and Mou, Y. 2020. “Experimental study on basic mechanical properties of basalt fiber reinforced concrete”. Mater., 13(6): 1362. | ||
آمار تعداد مشاهده مقاله: 475 تعداد دریافت فایل اصل مقاله: 251 |