تعداد نشریات | 21 |
تعداد شمارهها | 606 |
تعداد مقالات | 8,954 |
تعداد مشاهده مقاله | 66,941,788 |
تعداد دریافت فایل اصل مقاله | 7,539,566 |
طراحی و ساخت آشکارساز مادون قرمز بر پایه نانوکامپوزیت پلیآنیلین/ نانوسیم نقره | ||
شیمى کاربردى روز | ||
دوره 18، شماره 67، تیر 1402، صفحه 149-164 اصل مقاله (1.16 M) | ||
نوع مقاله: مقاله علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/chem.2022.27886.2091 | ||
نویسندگان | ||
مهسا مهدوی نیا1؛ غلامرضا کیانی* 1؛ ایوب کریم زادقویدل2 | ||
1گروه شیمی آلی و بیوشیمی، دانشکده شیمی، دانشگاه تبریز، تبریز، ایران | ||
2گروه مهندسی مکانیک، دانشکده فنی و حرفه ای، دانشگاه فنی و حرفه ای، تهران، ایران | ||
تاریخ دریافت: 01 مرداد 1401، تاریخ بازنگری: 13 آبان 1401، تاریخ پذیرش: 16 آذر 1401 | ||
چکیده | ||
هدف از این پژوهش، ساخت آشکارساز مادون قرمز برای کاربرد در حوزههای مختلف میباشد. برای این منظور، نانوکامپوزیت پلیآنیلین/نانوسیم نقره، به روش قالب شیمیایی سخت سنتز گردید. مشخصات ساختاری نانوکامپوزیت حاصل، توسط میکروسکوپ الکترونی روبشی (SEM) و طیفنگاری پراش انرژی پرتوی ایکس (EDS) مورد ارزیابی قرار گرفت. نتایج حاصل از آنالیزهای میکروسکوپی نشان داد که فیلم پلیآنیلین سنتزی، دارای تخلخل-های غیریکنواخت با توزیع اندازه با قطر تقریبی nm 270 بوده و دارای (wt.%) 28/1 از نانوسیمهای نقره در اندازه nm10080 میباشد. نتایج ارزیابی عملکرد آشکارساز مادون قرمز مبتنی بر نانوکامپوزیت پلیآنیلین/نانوسیم نقره مشخص کرد که با تابش نور مادون قرمز، جریان آشکارساز تحت جهت-گیری (بایاس) ثابت، افزایش مییابد و با قطع تابش به حالت اولیه باز میگردد. این افزایش به میزان 8/4% بود که نشاندهنده بهبود، نسبت به نمونههای مشابه قبلی میباشد. همچنین، زمان پاسخ و بازیابی به ترتیب در حدود 30 و 8 ثانیه بدست آمد. | ||
کلیدواژهها | ||
پلی آنیلین؛ آشکارسازمادون قرمز؛ پلیمر رسانا؛ نانوکامپوزیت؛ نانوسیم نقره | ||
عنوان مقاله [English] | ||
Design and Fabrication of Infrared Detector Based on Polyaniline/Silver Nanowire Nanocomposite | ||
نویسندگان [English] | ||
Mahsa Mahdavinia1؛ Gholamreza Kiani1؛ Ayub Karimzad Ghavidel2 | ||
1Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran | ||
2Department of Mechanical Engineering, Technical and Vocational Faculty, Technical and Vocational University, Tehran, Iran | ||
چکیده [English] | ||
The aim of this research is the fabrication of infrared detector for using in different fields. For this purpose, polyaniline/silver nanowire nanocomposite was synthesized by hard chemical template method. The structural characteristics of the prepared nanocomposite were examined by a scanning electron microscope (SEM) and X-ray diffraction (EDS) spectroscopy. The results of the microscopic analysis showed that the synthetic polyaniline film had a non-uniform porosities with the approximate size distribution in diameter of 270 nm and had contain 1.28 (wt.%) of silver nanowires in the size of 80-100 nm. The results of evaluating the performance of an infrared detector based on the polyaniline/silver nanowire nanocomposite showed that with infrared light, the detector current increases under constant orientation (bias) and returns to its original state when the radiation is stopped. This increase was 4.8%, which indicates an improvement in comparison with prior similar samples. The response and the recovery time were obtained about 30 and 8 s, respectively. | ||
کلیدواژهها [English] | ||
Polyaniline, Infrared detector, Conductive polymer, Nanocomposite, Silver nanowires | ||
مراجع | ||
]1[ Karim, A., & Andersson, J. Y. (2013). Infrared detectors: Advances, challenges and new technologies. IOP Conference Series: Materials Science and Engineering, 51(1), 012001.
]2[ Gehrz, R. D., Becklin, E. E., De Pater, I., Lester, D. F., Roellig, T. L., & Woodward, C. E. (2009). A new window on the cosmos: The stratospheric observatory for infrared astronomy (SOFIA). Advances in Space Research, 44(4), 413-432.
]3[ Rogalski, A. (2002). Infrared detectors: an overview. Infrared physics & technology, 43(3), 187-210.
]4[ Aleks, M., Jagtap, C., Kadam, V., Kolev, G., Denishev, K., & Pathan, H. (2021). An overview of microelectronic infrared pyroelectric detector. Engineered Science, 16, 82-89.
]5[ Verma, V. B., Korzh, B., Walter, A. B., Lita, A. E., Briggs, R. M., Colangelo, M., & Shaw, M. D. (2021). Single-photon detection in the mid-infrared up to 10 μm wavelength using tungsten silicide superconducting nanowire detectors. APL Photonics, 6(5), 056101.
]6[ Rogalski, A. (2011). Recent progress in infrared detector technologies. Infrared Physics & Technology, 54(3), 136-154.
]7 [ Bang, D., Chang, Y. W., Park, J., Lee, J., Yoo, K. H., Huh, Y. M., & Haam, S. (2012). Fabrication of a near-infrared sensor using a polyaniline conducting polymer thin film. Thin Solid Films, 520(22), 6818-6821.
]8[ Maimon, S., & Wicks, G. W. (2006). nBn detector, an infrared detector with reduced dark current and higher operating temperature. Applied Physics Letters, 89(15), 151109.
]9[ Bhan, R. K., & Dhar, V. (2019). Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infrared focal plane arrays and their characterization. Opto-Electronics Review, 27(2), 174-193.
]10[ Chen, S., You, L., Zhang, W., Yang, X., Li, H., Zhang, L., & Xie, X. (2015). Dark counts of superconducting nanowire single-photon detector under illumination. Optics express, 23(8), 10786-10793.
]11[ Wan, M. (2008). A template‐free method towards conducting polymer nanostructures. Advanced Materials, 20(15), 2926-2932.
]12 [You, L., Wu, J., Xu, Y., Hou, X., Fang, W., Li, H., & Xie, X. (2017). Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths. Optics Express, 25(25), 31221-31229.
]13 [Adhikary, S., & Chakrabarti, S. (2018). Quaternary capped in (Ga) As/GaAs quantum dot infrared photodetectors (Vol. 23). Singapore: Springer.
]14 [Meng, Y., Zou, K., Hu, N., Xu, L., Lan, X., Steinhauer, S., & Hu, X. (2022). Fractal superconducting nanowires detect infrared single photons with 84% system detection efficiency, 1.02 polarization sensitivity, and 20.8 ps timing resolution. Acs Photonics, 9(5), 1547-1553.
]15[ Rogalski, A. (2003). Infrared detectors: status and trends. Progress in quantum electronics, 27(2), 59-210.
]16[ Lijing, Y., Libin, T., Wenyun, Y., & Qun, H. (2021). Research progress of uncooled infrared detectors. Infrared and Laser Engineering, 50(1), 20211013-1.
]17 [Canedy, C. L., Bewley, W. W., Merritt, C. D., Kim, C. S., Kim, M., Warren, M. V., & Meyer, J. R. (2019). Resonant-cavity infrared detector with five-quantum-well absorber and 34% external quantum efficiency at 4 μm. Optics express, 27(3), 3771-3781.
]18[ Yadav, P. K., Ajitha, B., Reddy, Y. A. K., & Sreedhar, A. (2021). Recent advances in development of nanostructured photodetectors from ultraviolet to infrared region: A review. Chemosphere, 279, 130473.
]19 [Steenbergen, E. H., Morath, C. P., Maestas, D., Jenkins, G. D., & Logan, J. V. (2019). Comparing II-VI and III-V infrared detectors for space applications. Infrared Technology and Applications XLV, 11002, 299-307.
]20 [Boone, N., Zhu, C., Smith, C., Todd, I., & Willmott, J. R. (2018). Thermal near infrared monitoring system for electron beam melting with emissivity tracking. Additive Manufacturing, 22, 601-605.
]21[ Jackowska, K., Bieguński, A. T., & Tagowska, M. (2008). Hard template synthesis of conducting polymers: a route to achieve nanostructures. Journal of Solid State Electrochemistry, 12, 437-443.
]22[ Nambiar, S., & Yeow, J. T. (2011). Conductive polymer-based sensors for biomedical applications. Biosensors and Bioelectronics, 26(5), 1825-1832.
]23[Hui, Y., & Rinaldi, M. (2013). High performance NEMS resonant infrared detector based on an aluminum nitride nano-plate resonator.
]24[ Aleksandrova, M. (2022). Characterization of infrared detector with lead-free perovskite and core–shell quantum dots on silicon substrate. Journal of Materials Science: Materials in Electronics, 33(31), 23900-23909.
]25[ Mazzara, F., Patella, B., D’Agostino, C., Bruno, M. G., Carbone, S., Lopresti, F., & Inguanta, R. (2021). PANI-based wearable electrochemical sensor for pH sweat monitoring. Chemosensors, 9(7), 169.
]26[ Kinch, M. A. (2000). Fundamental physics of infrared detector materials. Journal of Electronic Materials, 29, 809-817.
]27 [Astaf'ev, O., Kavano, I., Komiyama, S., Gavrilenko, V. I., & Erofeeva, I. V. (2002). Response time of the quantum well Hall effect detector in far IR radiation region. Izvestiya Akademii Nauk. Rossijskaya Akademiya Nauk. Seriya Fizicheskaya, 66(2), 243-246.
]28[ Larciprete, M. C., Albertoni, A., Belardini, A., Leahu, G., Li Voti, R., Mura, F., & Nasibulin, A. G. (2012). Infrared properties of randomly oriented silver nanowires. Journal of Applied Physics, 112(8), 083503.
]29[ Jones, A. C., Olmon, R. L., Skrabalak, S. E., Wiley, B. J., Xia, Y. N., & Raschke, M. B. (2009). Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires. Nano letters, 9(7), 2553-2558.
]30 [Ansari-asl, Z., Neisi, Z., Sedaghat, T., & Nobakht, V. (2019). Synthesis, characterization, and electrochemical properties of polyaniline/Co (II) metal-organic framework composites. Applied Chemistry, 14(51), 251-266. (in persian)
]31 [Xiang, H., Xin, C., Hu, Z., Aigouy, L., Chen, Z., & Yuan, X. (2021). Long-term stable near-infrared–short-wave-infrared photodetector driven by the photothermal effect of polypyrrole nanostructures. ACS Applied Materials & Interfaces, 13(38), 45957-45965.
]32 [Nosrati, R., (2019), Design and fabrication of infrared detector baced on multiwall carbon nanotubes, Master of Science (M.Sc.) Thesis, The Tbriz University)
]33 [Guan, H., Li, W., Yang, R., Su, Y., & Li, H. (2022). Microstructured PVDF film with improved performance as flexible infrared sensor. Sensors, 22(7), 2730.
]34 [Amiri, M., & Alizadeh, N. (2020). Highly photosensitive near infrared photodetector based on polypyrrole nanoparticle incorporated with CdS quantum dots. Materials Science in Semiconductor Processing, 111, 104964. | ||
آمار تعداد مشاهده مقاله: 297 تعداد دریافت فایل اصل مقاله: 275 |