تعداد نشریات | 21 |
تعداد شمارهها | 606 |
تعداد مقالات | 8,954 |
تعداد مشاهده مقاله | 66,941,830 |
تعداد دریافت فایل اصل مقاله | 7,539,638 |
تعیین خصوصیات جذب سطحی آموکسی سیلین بر روی کربن فعال حاصل از برگ اوکالیپتوس و کاه گندم | ||
شیمى کاربردى روز | ||
دوره 18، شماره 67، تیر 1402، صفحه 9-30 اصل مقاله (1.3 M) | ||
نوع مقاله: مقاله علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/chem.2023.26959.2066 | ||
نویسندگان | ||
حسین دشتی خویدکی* ؛ فرشته سرلک؛ محمد حسین فکری | ||
گروه شیمی، دانشکده علوم پایه، دانشگاه آیت ا... العظمی بروجردی، بروجرد، ایران | ||
تاریخ دریافت: 08 اردیبهشت 1401، تاریخ بازنگری: 22 مهر 1401، تاریخ پذیرش: 03 بهمن 1401 | ||
چکیده | ||
در این پژوهش، آموکسیسیلین از محلولهای آبی توسط کربن فعال حاصل از برگ اوکالیپتوس و کاه گندم بهوسیله فرآیند جذب سطحی جذب شد. اثرات پارامترهای مختلف مانند pH اولیه محلول آموکسیسیلین، غلظت اولیه محلول آموکسیسیلین، مقدار جاذب، زمان تماس و دما بر فرآیند جذب سطحی مورد بررسی قرار گرفت. در شرایط بهینه شامل 11=pH ، غلظت اولیه آموکسیسیلین 10 میلیگرم بر لیتر، مقدار جاذب 07/0 گرم، زمان تماس 30 و 60 دقیقه بهترتیب برای برگ اوکالیپتوس و کاه گندم، و دمای oC 1±25، حداکثر درصد جذب آموکسیسیلین بر روی کربن فعال حاصل از برگ اوکالیپتوس و کاه گندم به ترتیب 4/72 درصد و 2/79 درصد به دست آمد. علاوه بر این، مقایسه نتایج تجربی با ایزوترمهای جذب سطحی لانگمویر، فروندلیچ و تمکین نشان داد که ایزوترم لانگمویر با دادههای تعادلی برازش بهتری نسبت به ایزوترم فروندلیچ دارد اما برازش با ایزوترم تمکین برای هر دو جاذب ضعیفتر است. همچنین پارامترهای ترمودینامیکی جذب سطحی مانند ΔH0 و ΔS0 محاسبه شدند که مقادیر منفی آنها نشان داد که جذب سطحی آموکسیسیلین بر روی کربن فعال تهیه شده از برگ اوکالیپتوس و کاه گندم بهترتیب فرآیندی گرمازا و همراه با کاهش بی-نظمی است. ضمنا، منفیتر بودن مقدار ΔG0 در دمای oC 25 نسبت به دماهای بالاتر، نشانه خودبخودیتر بودن فرایند جذب سطحی در این دما میباشد. علاوه بر این، مطالعه سینتیک جذب سطحی نشان داد که جذب سطحی آموکسیسیلین روی هر دو جاذب از مرتبه شبه درجه دوم است. | ||
کلیدواژهها | ||
جذب سطحی؛ جاذب؛ آموکسی سیلین؛ برگ اوکالیپتوس؛ کاه گندم | ||
عنوان مقاله [English] | ||
Adsorption Characteristics of Amoxicillin on Activated Carbon from Eucalyptus Leave and Wheat Straw | ||
نویسندگان [English] | ||
Hossein Dashti Khavidaki؛ Fereshteh Sarlak؛ Mohammad Hossein Fekri | ||
Department of Chemistry, Faculty of Basic Sciences, Ayat Azami Borujerdi University, Borujerd, Iran | ||
چکیده [English] | ||
In this study, amoxicillin from aqueous solutions was adsorbed by activated carbons from eucalyptus leave and wheat straw through adsorption process. The effects of varying parameters such as initial pH of amoxicillin solution, initial concentration of amoxicillin solution, adsorbent dosage, contact time and temperature on the adsorption process were examined. Under optimum conditions containing pH 11, amoxicillin initial concentration 10 mgL-1, adsorbent dosage 0.07 g, contact time 30 and 60 min for eucalyptus leave and wheat straw, respectively, and temperature 25±1oC, maximum adsorption percentages for amoxicillin on eucalyptus leave and wheat straw were obtained 72.4% and 79.2% respectively. In addition, comparison of the experimental results with Langmuir, Freundlich and Temkin adsorption isotherms, showed that the Langmuir isotherm have better fitting with the equilibrium data than the Freundlich isotherm but the fitting with Temkin isotherm is weaker for both adsorbents. Also, thermodynamic parameters of the adsorption such as 〖∆H〗^0 and 〖∆S〗^0 were calculated that theirs negative values showed that the amoxicillin adsorption on eucalyptus leave and wheat straw is an exothermic process and along with decrease of randomness, respectively. Meanwhile, the more negative value of 〖∆G〗^0 at 25oC compared to higher temperatures is a sign of more spontaneous adsorption process at this temperature. In addition, the study of adsorption kinetics showed that the amoxicillin adsorption on both adsorbents is pseudo-second order. | ||
کلیدواژهها [English] | ||
Adsorption, Adsorbent, Amoxicillin, Eucalyptus Leave, Wheat Straw | ||
مراجع | ||
[1] Halling-Sørensen, B. N. N. S., Nielsen, S. N., Lanzky, P. F., Ingerslev, F., Lützhøft, H. H., & Jørgensen, S. E. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment-A review. Chemosphere, 36(2), 357-393.
[2] Kümmerer, K. (2003). Significance of antibiotics in the environment. Journal of Antimicrobial Chemotherapy, 52(1), 5-7.
[3] Hirsch, R., Ternes, T. A., Haberer, K., Mehlich, A., Ballwanz, F., & Kratz, K. L. (1998). Determination of antibiotics in different water compartments via liquid chromatography–electrospray tandem mass spectrometry. Journal of chromatography A, 815(2), 213-223.
[4] Golet, E. M., Alder, A. C., Hartmann, A., Ternes, T. A., & Giger, W. (2001). Trace determination of fluoroquinolone antibacterial agents in urban wastewater by solid-phase extraction and liquid chromatography with fluorescence detection. Analytical chemistry, 73(15), 3632-3638.[5] Ternes, T. A. (2001). Analytical methods for the determination of pharmaceuticals in aqueous environmental samples. TrAC Trends in Analytical Chemistry, 20(8), 419-434.
[6] Sacher, F., Lange, F. T., Brauch, H. J., & Blankenhorn, I. (2001). Pharmaceuticals in groundwaters: analytical methods and results of a monitoring program in Baden-Württemberg, Germany. Journal of chromatography A, 938(1-2), 199-210.[7] Lindsey, M. E., Meyer, M., & Thurman, E. M. (2001). Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Analytical chemistry, 73(19), 4640-4646.[8] de Alda, M. J. L., Dı́az-Cruz, S., Petrovic, M., & Barceló, D. (2003). Liquid chromatography–(tandem) mass spectrometry of selected emerging pollutants (steroid sex hormones, drugs and alkylphenolic surfactants) in the aquatic environment. Journal of Chromatography a, 1000(1-2), 503-526.
[9] Dı́az-Cruz, M. S., de Alda, M. J. L., & Barceló, D. (2003). Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. TrAC Trends in Analytical Chemistry, 22(6), 340-351.[10] Soliman, M. A., Pedersen, J. A., & Suffet, I. M. (2004). Rapid gas chromatography–mass spectrometry screening method for human pharmaceuticals, hormones, antioxidants and plasticizers in water. Journal of Chromatography A, 1029(1-2), 223-237.[11] Benito-Peña, E., Partal-Rodera, A. I., León-González, M. E., & Moreno-Bondi, M. C. (2006). Evaluation of mixed mode solid phase extraction cartridges for the preconcentration of beta-lactam antibiotics in wastewater using liquid chromatography with UV-DAD detection. Analytica Chimica Acta, 556(2), 415-422.
[12] Matsui, Y., Ozu, T., Inoue, T., & Matsushita, T. (2008). Occurrence of a veterinary antibiotic in streams in a small catchment area with livestock farms. Desalination, 226(1-3), 215-221.
[13] Babić, S., Ašperger, D., Mutavdžić, D., Horvat, A. J., & Kaštelan-Macan, M. (2006). Solid phase extraction and HPLC determination of veterinary pharmaceuticals in wastewater. Talanta, 70(4), 732-738.
[14] Gillies, M., Ranakusuma, A., Hoffmann, T., Thorning, S., McGuire, T., Glasziou, P., & Del Mar, C. (2015). Common harms from amoxicillin: a systematic review and meta-analysis of randomized placebo-controlled trials for any indication. Cmaj, 187(1), E21-E31.
[15] Hernando, M. D., Mezcua, M., Fernández-Alba, A. R., & Barceló, D. (2006). Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69(2), 334-342.
[16] Homem, V., Alves, A., & Santos, L. (2010). Amoxicillin degradation at ppb levels by Fenton's oxidation using design of experiments. Science of the total environment, 408(24), 6272-6280.
[17] Pan, X., Deng, C., Zhang, D., Wang, J., Mu, G., & Chen, Y. (2008). Toxic effects of amoxicillin on the photosystem II of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests. Aquatic Toxicology, 89(4), 207-213.
[18] Putra, E. K., Pranowo, R., Sunarso, J., Indraswati, N., & Ismadji, S. (2009). Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics. Water research, 43(9), 2419-2430.
[19] Andreozzi, R., Canterino, M., Marotta, R., & Paxeus, N. (2005). Antibiotic removal from wastewaters: the ozonation of amoxicillin. Journal of hazardous Materials, 122(3), 243-250.
[20] Balcıoğlu, I. A., & Ötker, M. (2003). Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes. Chemosphere, 50(1), 85-95.
[21] Qiting, J., & Xiheng, Z. (1988). Combination process of anaerobic digestion and ozonization technology for treating wastewater from antibiotics production. Water Treat, 3, 285-291.
[22] Ostovar, F., Samadi, N., & Ansari, R. (2021). Using of Fenton advanced oxidation method for treatment of oily-contaminated wastewater. Applied Chemistry, 16(61), 85-100.
[23] Song, W., Cooper, W. J., Mezyk, S. P., Greaves, J., & Peake, B. M. (2008). Free radical destruction of β-blockers in aqueous solution. Environmental science & technology, 42(4), 1256-1261.
[24] Reyes, C., Fernandez, J., Freer, J., Mondaca, M. A., Zaror, C., Malato, S., & Mansilla, H. D. (2006). Degradation and inactivation of tetracycline by TiO2 photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 184(1-2), 141-146.
[25] Farrokhi, A., Bivareh, F., Dejbakhshpour, S., & Zeraatkar Moghaddam, A. (2021). Photocatalytic application of a phosphonate-based metal-organic framework for the removal of bisphenol A under natural sunlight. Applied Chemistry, 16(60), 9-24.
[26] Li, S. Z., Li, X. Y., & Wang, D. Z. (2004). Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics. Separation and Purification Technology, 34(1-3), 109-114.
[27] Arjang, S., & Motahari, K. (2019). Adsorption of organic chloride compounds from naphtha fraction of contaminated crude oil by sintered γ-Al2O3 nanoparticles at constant temperature of 303 K: Equilibrium, kinetic and thermodynamic. Applied Chemistry, 14(52), 9-26.
[28] Khalil, S. A., Mortada, L. M., & El-Khawas, M. (1984). The uptake of ampicillin and amoxycillin by some adsorbents. International journal of pharmaceutics, 18(1-2), 157-167.
[29] Gao, J., & Pedersen, J. A. (2005). Adsorption of sulfonamide antimicrobial agents to clay minerals. Environmental science & technology, 39(24), 9509-9516.
[30] Zhang, H., & Huang, C. H. (2007). Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere, 66(8), 1502-1512.
[31] Chao, Y., Zhu, W., Chen, F., Wang, P., Da, Z., Wu, X., ... & Li, H. (2014). Commercial diatomite for adsorption of tetracycline antibiotic from aqueous solution. Separation Science and Technology, 49(14), 2221-2227.
[32] Adriano, W. S., Veredas, V., Santana, C. C., & Gonçalves, L. B. (2005). Adsorption of amoxicillin on chitosan beads: Kinetics, equilibrium and validation of finite bath models. Biochemical engineering journal, 27(2), 132-137.
[33] Peng, B., Chen, L., Que, C., Yang, K., Deng, F., Deng, X., Shi, G., Xu, G., & Wu, M. (2016). Adsorption of antibiotics on graphene and biochar in aqueous solutions induced by π-π interactions. Scientific reports, 6(1), 1-10.
[34] Homem, V., Alves, A., & Santos, L. (2010). Amoxicillin removal from aqueous matrices by sorption with almond shell ashes. International journal of environmental and analytical chemistry, 90(14-15), 1063-1084.
[35] Aksu, Z., & Tunç, Ö. (2005). Application of biosorption for penicillin G removal: comparison with activated carbon. Process biochemistry, 40(2), 831-847.
[36] Dutta, M., Baruah, R., & Dutta, N. N. (1997). Adsorption of 6-aminopenicillanic acid on activated carbon. Separation and purification technology, 12(2), 99-108.
[37] Çalışkan, E., & Göktürk, S. (2010). Adsorption characteristics of sulfamethoxazole and metronidazole on activated carbon. Separation Science and Technology, 45(2), 244-255.
[38] Fu, H., Li, X., Wang, J., Lin, P., Chen, C., Zhang, X., & Suffet, I. M. (2017). Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling. Journal of environmental sciences, 56, 145-152.[39] Ahmed, M. J. (2017). Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons. Environmental toxicology and pharmacology, 50, 1-10.
[40] Moussavi, G., Alahabadi, A., Yaghmaeian, K., & Eskandari, M. (2013). Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chemical engineering journal, 217, 119-128.
[41] Qu, S., Huang, F., Yu, S., Chen, G., & Kong, J. (2008). Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. Journal of Hazardous Materials, 160(2-3), 643-647.
[42] Burchell, D. T. (1999). Carbon materials for advanced technology. Elsevier Science.
[43] Norabadi, E., Panahi, A. H., Ghanbari, R., Meshkinian, A., Kamani, H., & Ashrafi, S. D. (2020). Optimizing the parameters of amoxicillin removal in a photocatalysis/ozonation process using Box-Behnken response surface methodology. Desalin Water Treat, 192(192), 234-240.
[44] He, C., Ren, L., Zhu, W., Xu, Y., & Qian, X. (2015). Removal of mercury from aqueous solution using mesoporous silica nanoparticles modified with polyamide receptor. Journal of colloid and interface science, 458, 229-234.
[45] Mihaly-Cozmuta, L., Mihaly-Cozmuta, A., Peter, A., Nicula, C., Tutu, H., Silipas, D., & Indrea, E. (2014). Adsorption of heavy metal cations by Na-clinoptilolite: Equilibrium and selectivity studies. Journal of environmental management, 137, 69-80.
[46] Al-Degs, Y., Khraisheh, M. A. M., Allen, S. J., & Ahmad, M. N. (2000). Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Research, 34(3), 927-935.
[47] Hall, K. R., Eagleton, L. C., Acrivos, A., & Vermeulen, T. (1966). Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Industrial & engineering chemistry fundamentals, 5(2), 212-223.
[48] Lyklema, J. (2005). Fundamentals of interface and colloid science: soft colloids (Vol. 5). Elsevier.
[49] Lima, E. C., Hosseini-Bandegharaei, A., Moreno-Piraján, J. C., & Anastopoulos, I. (2019). A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption. Journal of molecular liquids, 273, 425-434.
[50] El-Halwany, M. M. (2010). Study of adsorption isotherms and kinetic models for Methylene Blue adsorption on activated carbon developed from Egyptian rice hull (Part II). Desalination, 250(1), 208-213.
[51] Ho, Y. S., & McKay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process safety and environmental protection, 76(4), 332-340.
[52] Pouretedal, H. R., & Sadegh, N. (2014). Effective removal of amoxicillin, cephalexin, tetracycline and penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood. Journal of Water Process Engineering, 1, 64-73.
[53] de Franco, M. A. E., de Carvalho, C. B., Bonetto, M. M., de Pelegrini Soares, R., & Féris, L. A. (2017). Removal of amoxicillin from water by adsorption onto activated carbon in batch process and fixed bed column: kinetics, isotherms, experimental design and breakthrough curves modelling. Journal of Cleaner Production, 161, 947-956. | ||
آمار تعداد مشاهده مقاله: 476 تعداد دریافت فایل اصل مقاله: 589 |