تعداد نشریات | 21 |
تعداد شمارهها | 593 |
تعداد مقالات | 8,812 |
تعداد مشاهده مقاله | 66,763,422 |
تعداد دریافت فایل اصل مقاله | 7,326,502 |
Comparison processors spectral analysis concentrations for aromatic compounds using the application of mathematical models | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 14، دوره 14، شماره 3، خرداد 2023، صفحه 163-173 اصل مقاله (1.16 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.29565.4191 | ||
نویسندگان | ||
Nadheer J. Mohammed1؛ Zeyad Al-Ibadi* 2؛ Al-Zubadi Sura3 | ||
1Physics Department, Optoelectronics and Thin Films Laboratory, College of Science, Mustansiriyah University, Baghdad, Iraq | ||
2College of Science for Women, University of Babylon, Babylon, Iraq | ||
3Anesthesia Techniques Department, Al-Mustaqbal University College, Iraq | ||
تاریخ دریافت: 19 آبان 1401، تاریخ بازنگری: 20 دی 1401، تاریخ پذیرش: 08 بهمن 1401 | ||
چکیده | ||
Prolonged exposure to gases in enclosed spaces, can cause health problems that may not be easily eliminated, Several methods have been developed to determine the concentration of aromatic hydrocarbons. But these methods have certain limitations, which complicate the titration. Regression-based methods can be used using the software and applying numerical methods to the data obtained to determine the concentration of gases. The main idea of this paper: is to keep up with the ideal balance, and limit the deficiency of necessary to obtained from spectroscopic data, and the effect of mutilations presented by different noise decreases and autofluorescence background elimination algorithms was determined from the comparison data. And these changes ratios were in remove background fluorescence(benzene, toluene, xylene), for the (PolyFit) method they were 3% and 5% and 2%, and for the (ModPoly) method they were 1% and 2% and 2%, and for the gas processor method, they were 2% and 5% and 2 %, respectively. So it was noticed it has been noticed here that the proposed method (GasesProcessors) is better in terms of filter performance and autofluorescence background removal compared to other methods. | ||
کلیدواژهها | ||
Sensors؛ Aromatics hydrocarbons(BTX)؛ Fluorescence؛ Polynomial FIT (Polyfit)؛ GasesProcessors | ||
مراجع | ||
[1] S. Akhmanov and N. Koroteev, Spectroscopy of light scattering and nonlinear optics. Nonlinear-optical methods of active spectroscopy of Raman and Rayleigh scattering, Soviet Phys. Uspekhi 20 (1977), no. 11, 899–936.
[2] D. Ayll´on, R. Gil-Pita, P. Jarabo-Amores and M. Rosa-Zurera, Speech source separation using a generalized mean shift algorithm, Signal Process. 92 (2012), no. 9, 2248–2252.
[3] N.M.D. Brown and P. Bladon, Spectroscopy and structure of (1, 3-diketonato) boron difluorides and related compounds, J. Chem. Soc. A: Inorg. Phys. Theor. (1969), 526–532.
[4] P. Cadusch, M. Hlaing, S.A. Wade, S.L. McArthur and P.R. Stoddart, Improved methods for fluorescence background subtraction from Raman spectra, J. Raman Spect. 44 (2013), no. 11, 1587–1595.
[5] T. Cai, D. Zhang and D. Ben–Amotz, Enhanced chemical classification of Raman images using multiresolution wavelet transformation, Appl. Spect. 55 (2001), no. 9, 1124–1130.
[6] J. Chan, S. Fore, S. Wachsmann-Hogiu and T. Huser, Raman spectroscopy and microscopy of individual cells and cellular components, Laser Photonics Rev. 2 (2008), no. 5, 325–349.
[7] H. Chen, W. Xu, N. Broderick and J. Han, An adaptive denoising method for Raman spectroscopy based on lifting wavelet transform, J. Raman Spect. 49 (2018), no. 9, 1529–1539.
[8] J. Coupland, Optical signal processing—Fundamentals, Optics Amp Laser Technol. 24 (1992), no. 5, p. 305.
[9] J.D.A. Espinoza, V. Sazhnikov, S. Sabik, D. Ionov, E. Smits, S. Kalathimekkad, G. Van Steenberge, M. Alfimov, M. Po´sniak, E. Dobrzy´nska and M. Szewczy´nska, Flexible optical chemical sensor platform for BTX, Proc. Eng. 47 (2012), 607–610.
[10] J.C. Goswami and A.K. Chan, Fundamentals of wavelets: theory, algorithms, and applications, John Wiley &Sons, 2011.
[11] V. Goyal, Theoretical foundations of transform coding, IEEE Signal Process. Mag. 18 (2001), no. 5, 9–21.
[12] R. Heinrich, A. Popescu, A. Hangauer, R. Strzoda and S. H¨ofling, High performance direct absorption spectroscopy of pure and binary mixture hydrocarbon gases in the 6–11$$\upmu $$ µ m range, Appl. Phys. B 123 (2017), no. 8, 1–9.
[13] W. Huang, R.I. Griffiths, I.P. Thompson, M.J. Bailey and A.S. Whiteley, Raman microscopic analysis of single microbial cells, Anal. Chem. 76 (2004), no. 15, 4452–4458.
[14] D. Ionov, G. Yurasik, Y. Kononevich, V. Sazhnikov, A. Muzafarov and M. Alfimov, Simple fluorescent sensor for simultaneous selective quantification of benzene, toluene and xylene in a multicomponent mixture, Proc. Eng. 168 (2016), 341–345.
[15] A.I.Z. Khalaf, M. Alboedam, H.J. Abidalhussein and A.Z.S. Hassan, The role of blood proteins and nucleic acids in the detection of multiple Myeloma based on Raman spectroscopy, EurAsian J. BioSci. 14 (2020), no. 1, 1955–1963.
[16] A.I.Z. Khalaf, M. Alboedam, H.J. Abidalhussein and A.Z.S. Hassan, Detecting levels amino acids for proteins of different for patients with myeloma and comparing them using a portable Raman spectrometer, EurAsian J. BioSci. 14 (2020), 2029–2036.
[17] M.D. Morris, Review - modern Raman spectroscopy: a practical approach, Anal. Chem. 78 (2006), no. 1, p. 33.
[18] P. Mosier-Boss, S. Lieberman and R. Newbery, Fluorescence rejection in Raman spectroscopy by shifted-spectra, edge detection, and FFT filtering techniques, Appl. Spectr. 49 (1995), no. 5, 630–638.
[19] J. Motz, S.J. Gandhi, O.R. Scepanovic, A.S. Haka, J.R. Kramer Jr, R.R. Dasari and M.S. Feld, Real-time Raman system for in vivo disease diagnosis, J. Biomed. Optics 10 (2005), no. 3, 031113.
[20] A. O’Grady, C. Dennis, D. Denvir, J.J. McGarvey and S.E. Bell, Quantitative Raman spectroscopy of highly fluorescent samples using pseudosecond derivatives and multivariate analysis, Anal. Chem. 73 (2001), no. 9, 2058–2065.
[21] T. Ouyang, C. Wang, Z. Yu, R. Stach, B. Mizaikoff, B. Liedberg, G. Huang and Q. Wang, Quantitative analysis of gas phase IR spectra based on extreme learning machine regression model, Sensors 19 (2019), no. 24, 1–20.
[22] M. Posp´ıˇsilov´a, G. Kuncov´a and J. Tr¨ogl, Fiber-optic chemical sensors and fiber-optic bio-sensors, Sensors 15 (2015), no. 10, 25208–25259.
[23] S. Saint-Jalm, P. Berto, L. Jullien, E. Andresen and H. Rigneault, Rapidly tunable and compact coherent Raman scattering light source for molecular spectroscopy, J. Raman Spectr. 45 (2014), no. 7, 515–520.
[24] J. Schnur, Sequence-based pathogen diagnostics and surveillance, Nanomed.: Nanotechnol. Biol. Med. 2 (2006), no. 4, 272.
[25] I.V. Stasyuk and T.S. Mysakovych, Raman light scattering for systems with strong short-range interaction, Condensed Matter Phys. 3 (2000), no. 1, p. 183.
[26] M. Strehle, P. Roesch, R. Petry, A. Hauck, R. Thull, W. Kiefer and J. Popp, A Raman spectroscopic study of the adsorption of fibronectin and fibrinogen on titanium dioxide nanoparticles, Phys. Chem. Chem. Phys. 6 (2004), no. 22, 5232–5236.
[27] S. Tseng, Modeling the sub-diffraction focusing phenomenon of light propagation through scattering medium, Methods 136 (2018), 75–80.
[28] S.B. Twiss, D.M. Teague, J.W. Bozek and M.V. Sink, Application of infrared spectroscopy to exhaust gas analysis, J. Air Pollut. Control Assoc. 5 (1955), no. 2, 75–83.
[29] D. Wilson, The median-median line, Math. Teacher 104 (2010), no. 4, 262–267.
[30] O. Wolfbeis, Fiber-optic chemical sensors and biosensors, Anal. Chem. 78 (2006), no. 12, 3859–3874.
[31] A. Zeyad, M. Alboedam, I. Katanov and A. Sura, Application of mathematical models and digital filters and their processors of spectral analysis for aromatic compounds gas in a fluorescent chemical, Int. J. Nonlinear Anal. Appl. 12 (2021), 109–122.
[32] A. Zeyad, M. Alboedam, I. Katanov and A. Sura, Detecting levels and innovative applications for the detection of aromatic compounds using multivariate curve analysis and spectroscopy data, Neuro Quantol. 19 (2021), no. 3, 46–55. | ||
آمار تعداد مشاهده مقاله: 16,629 تعداد دریافت فایل اصل مقاله: 234 |