تعداد نشریات | 21 |
تعداد شمارهها | 603 |
تعداد مقالات | 8,909 |
تعداد مشاهده مقاله | 66,849,373 |
تعداد دریافت فایل اصل مقاله | 7,447,668 |
Monte Carlo Optimization of a Solar Combisystem Using Photovoltaic-Thermal Systems in Hot and Dry Climatic Condition | ||
Journal of Heat and Mass Transfer Research | ||
مقاله 12، دوره 9، شماره 2 - شماره پیاپی 18، بهمن 2022، صفحه 233-244 اصل مقاله (761.07 K) | ||
نوع مقاله: Full Length Research Article | ||
شناسه دیجیتال (DOI): 10.22075/jhmtr.2023.28432.1394 | ||
نویسندگان | ||
Maryam Karami* 1؛ Kiavash Akbari2؛ Mohammad Jalalizadeh2 | ||
1Department of Mechanical Enginnering, Faculty of Enginnering, Kharazmi Univeristy, Tehran, Iran | ||
2Department of Architectural Technology, Faculty of Architecture and Urbanism, University of Art, Tehran, Iran | ||
تاریخ دریافت: 28 شهریور 1401، تاریخ بازنگری: 19 اسفند 1401، تاریخ پذیرش: 23 اسفند 1401 | ||
چکیده | ||
In this study, the performance of a solar combisystem using glazed thermal photovoltaic-thermal systems is investigated and optimized to provide the thermal and electrical demands of a five-story building in Hot/Dry climatic conditions (Tehran, Iran). Dynamic simulation of the system performance is carried out using TRNSYS software. Since there is no type for a glazed thermal photovoltaic-thermal system in TRNSYS, it is modeled in MATLAB software and then the modeling results are coupled with the TRNSYS model. The system optimization using a stochastic economic analysis based on the Monte Carlo method showed the solar combisystem with a photovoltaic-thermal system area of 31.93 m2 and a thermal storage tank of 400 l provides the building energy demands optimally. For the optimum system, the probability that the payback time is less than 5 years, the internal rate of return is more than 20% and the life cycle savings is more than the initial cost is 74.2%, 11.5%, and 97%, respectively. The thermoelectric analysis of the optimum solar combisystem indicates that, in August, the maximum electrical, thermal, and total solar fractions of the system are obtained, which are 11%, 87%, and 39%, respectively. | ||
کلیدواژهها | ||
Solar combisystem؛ Photovoltaic-thermal system؛ Dynamic simulation؛ Monte Carlo optimization؛ TRNSYS | ||
عنوان مقاله [English] | ||
بهینه سازی سیستم ترکیبی خورشیدی با استفاده از سیستم های فوتوولتائیک-گرمایی و روش مونت کارلو در منطقه گرم و خشک | ||
چکیده [English] | ||
در این تحقیق، عملکرد یک سیستم ترکیبی خورشیدی با استفاده از سیستمهای فتوولتائیک گرمایی با پوشش شیشه برای تامین نیازهای گرمایی و الکتریکی یک ساختمان 5 طبقه در شرایط اقلیمی گرم و خشک (تهران، ایران) بررسی و بهینهسازی شده است. شبیه سازی دینامیکی عملکرد سیستم با استفاده از نرم افزار TRNSYS انجام می شود. از آنجایی که سیستم فتوولتائیک گرمایی با پوشش شیشه در TRNSYS وجود ندارد،این سیستم در نرم افزار MATLAB مدلسازی شده و سپس نتایج مدلسازی با مدل TRNSYS کوپل شده است. بهینهسازی سیستم با استفاده از تحلیل اقتصادی تصادفی بر اساس روش مونت کارلو نشان داد که سیستم ترکیبی خورشیدی با مساحت سیستم فتوولتائیک گرمایی 31.93 متر مربع و مخزن ذخیره حرارتی 400 لیتری، نیازهای انرژی ساختمان را بهطور بهینه تأمین میکند. برای سیستم بهینه، احتمال اینکه زمان بازپرداخت کمتر از 5 سال، نرخ بازده داخلی بیش از 20 درصد و صرفه جویی در چرخه عمر بیشتر از هزینه اولیه باشد به ترتیب 74.2، 11.5 درصد و 97 درصد است. تجزیه و تحلیل ترموالکتریک سیستم ترکیبی خورشیدی بهینه نشان می دهد که در ماه آگوست، حداکثر کسر الکتریکی، حرارتی و کل خورشیدی سیستم به دست می آید که به ترتیب 11٪، 87٪ و 39٪ هستند. | ||
کلیدواژهها [English] | ||
سیستم ترکیبی خورشیدی, سیستم فوتوولتائیک- گرمایی, شبیه سازی دینامیکی, بهینه سازی مونت-کارلو, ترنسیس | ||
مراجع | ||
[1] Karami, M., Raisee, M., and Delfani, S., 2014. Numerical investigation of nanofluid-based solar collectors. IOP Conf. Ser.: Mater. Sci. Eng., 64 (1), 012044.
[2] Amin, Z., Nematollahi, O., and Alemrajabi, A.A, 2021. Disinfection process with solar drying system. Journal of Heat and Mass Transfer Research, 8 (1), pp. 23-28.
[3] Alamdari, P., Salihoglu, N.K., and Amin, Z., 2013. Solar energy potentials in Iran: A review. Renewable and Sustainable Energy Reviews, 21, pp. 778-788.
[4] Hormozi Moghaddam, M. and Karami, M., 2022. Heat transfer and pressure drop through mono and hybrid nanofluid‐based photovoltaic‐thermal systems. Energy Science & Engineering, 10 (3), pp. 918-931.
[5] Karami, M., Delfani, S., and Noroozi, A., 2020. Performance characteristics of a solar desiccant/M-cycle air-conditioning system for the buildings in hot and humid areas. Asian Journal of Civil Engineering, 21, pp. 189-199.
[6] Leckner, M., Zmeureanu, R., 2011. Life cycle cost and energy analysis of a Net Zero Energy House with solar combisystem. Applied Energy, 88 (1), pp. 232-241.
[7] Rasoul Asaee, S., IsmetUgursal, V., Beausoleil-Morrison, I., Ben-Abdallah, N., 2014. Preliminary study for solar combisystem potential in Canadian houses. Applied Energy, 130, pp. 510-518.
[8] Sustar, J. L., Burch, J., Krarti, M., 2015. Performance Modeling Comparison of a Solar Combisystem and Solar Water Heater. J. Sol. Energy Eng., 137 (6), 061001.
[9] Mehdaoui, F., Hazami, M., Messaouda, A., and Guizani, A.A., 2020. Performance analysis of two types of Solar Heating Systems used in buildings under typical North African climate (Tunisia). Applied Thermal Engineering, 165, 114203.
[10] Hazami, M., Mehdaoui, F., Naili, N., Noro, M., Lazzarin, R., and Guizani, A. A., 2017. Energetic, exergetic and economic analysis of an innovative Solar CombiSystem (SCS) producing thermal and electric energies: Application in residential and tertiary households. Energy Convers. Manag., 140, pp. 36–50.
[11] Katsaprakakis, D. A. and Zidianakis, G., 2019. Optimized Dimensioning and Operation Automation for a Solar-Combi System for Indoor Space Heating: A Case Study for a School Building in Crete. Energies, 12 (1).
[12] Karami, M. and Javanmardi, F., 2020. Performance assessment of a solar thermal combisystem in different climate zones. Asian Journal of Civil Engineering, 21, pp.751–762.
[13] Karami, M. and Nasiri Gahraz, S.S., 2022. Improving thermal performance of a solar thermal/desalination combisystem using nanofluid-based direct absorption solar collector. Sientia Iranica, 29 (3), Transactions on Mechanical Engineering (B), pp. 1288-1300.
[14] Esmaeili, M., Karami, M. and Delfani, S., 2020. Performance enhancement of a direct absorption solar collector using copper oxide porous foam and nanofluid. International Journal of Energy Research, 44 (7), pp. 5527-5544.
[15] Delfani, S., Karami, M., Akhavan-Behabadi, M.A., 2016. Experimental investigation on performance comparison of nanofluidbased direct absorption and flat plate solar collectors. International Journal of Nano Dimension (IJND), 7 (1), pp. 85-96.
[16] Karami, M. and Nasiri Gahraz, S.S., 2021. Transient simulation and life cycle cost analysis of a solar polygeneration system using photovoltaic-thermal collectors and hybrid desalination unit. Journal of Heat and Mass Transfer Research, 8 (2), pp. 243-256.
[17] Kannan, A., Prakash, J., Roan, D., 2021.Design and performance of an off-grid solar combisystem using phase change materials. International Journal of Heat and Mass Transfer, 164, 120574.
[18] Bornatico, R., Pfeiffer, M., Witzig, A. and Guzzella, L., 2012. Optimal sizing of a solar thermal building installation using particle swarm optimization. Energy, 41(1), pp. 31-37.
[19] Hin, J.N.C. and Zmeureane, R., 2014. Optimization of a residential solar combisystem for minimum life cycle cost, energy use and exergy destroyed. Solar Energy, 100, pp. 102-113.
[20] Rey, A. and Zmeureanu, R., 2016. Multi-objective optimization of a residential solar thermal combisystem. Solar Energy, 139, pp. 622-632.
[21] Rey, A. and Zmeureanu, R., 2017. Micro-time variant multi-objective particle swarm optimization (micro-TVMOPSO) of a solar thermal combisystem. Swarm and Evolutionary Computation, 36, pp. 76-90.
[22] Rey, A. and Zmeureanu, R., 2018. Multi-objective optimization framework for the selection of configuration and equipment sizing of solar thermal combisystems. Energy, 145, pp. 182-194.
[23] Li, Y.H., Kao, W.C., 2018. Taguchi optimization of solar thermal and heat pump combisystems under five distinct climatic conditions. Applied Thermal Engineering, 133, pp. 283-297.
[24] Thapa, B. and Wang, W., Williams, W., 2021. Life-cycle cost optimization of a solar combisystem for residential buildings in Nepal. Journal of Asian Architecture and Building Engineering, 21 (3), pp. 1137-1148.
[25] Jalalizadeh, M., Fayaz, Rima, Delfani, S., Jafari Mosleh, H. and Karami, M., 2021. Dynamic simulation of a trigeneration system using an absorption cooling system and building integrated photovoltaic thermal solar collectors. Journal of Building Engineering, 43, 102482.
[26] Goldsim. 2022. Monte Carlo Simulation. Monte Carlo Simulation and Methods Introduction - GoldSim.
[27] Mun, J., 2006. Modeling risk: Applying Monte Carlo simulation, real options analysis, forecasting, and optimization techniques 347. John Wiley & Sons.
[28] Fuller, S., 2010. Life-cycle cost analysis (LCCA). National Institute of Building Sciences, An Authoritative Source of Innovative Solutions for the Built Environment 1090.
[29] Gu, Y., Zhang, X., Myhren, J. A., Han, M., Chen, X. and Yuan, Y., 2018. Techno-economic analysis of a solar photovoltaic/thermal (PV/T) concentrator for building application in Sweden using Monte Carlo method. Energy Convers. Manag. 165, pp. 8-24.
[30] Kalogirou, S., 2014. Solar Energy Engineering: Processes and Systems, Academic Press, second edition. | ||
آمار تعداد مشاهده مقاله: 349 تعداد دریافت فایل اصل مقاله: 395 |