تعداد نشریات | 21 |
تعداد شمارهها | 606 |
تعداد مقالات | 8,954 |
تعداد مشاهده مقاله | 66,941,870 |
تعداد دریافت فایل اصل مقاله | 7,539,696 |
تولید بیودیزل با استفاده از نانوکامپوزیت جدیدی از چارچوب آلی-فلزی مبتنی بر Fe (ΙΙΙ) و اسید فسفومولیبدیک به عنوان یک کاتالیزور سبز و ناهمگن | ||
شیمى کاربردى روز | ||
دوره 18، شماره 67، تیر 1402، صفحه 31-50 اصل مقاله (1.46 M) | ||
نوع مقاله: مقاله علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/chem.2022.27186.2072 | ||
نویسندگان | ||
ثریا پرک1؛ احمد نیک سرشت* 2؛ محمد علی کرمی1 | ||
1گروه شیمی، واحد ایلام، دانشگاه آزاد اسلامی، ایلام، ایران | ||
2گروه شیمی، دانشگاه پیام نور،تهران، ایران | ||
تاریخ دریافت: 03 خرداد 1401، تاریخ بازنگری: 28 شهریور 1401، تاریخ پذیرش: 06 مهر 1401 | ||
چکیده | ||
در این مطالعه، سنتز نمونههای چارچوب آلی-فلزی بر پایه آهن (Ⅲ(، MIL-53(Fe)، همراه با فرآیند محصورسازی اسید فسفومولیبدیک با تابش فراصوت در دمای محیط و فشار اتمسفر انجام میشود. آنالیز و تحلیل دقیق نتایج نشانداد که ساختار کگینی هتروپلیاسید H3PMo برهمکنشهای الکتروستاتیک قوی با شبکه آهن (III) ایجادکرده، که نقش مهمی را در کاهش لیچینگ (شسته شدن) از ترکیب ایفا مینمایند. ساختار نانوکامپوزیت تهیهشدهی جدید، با استفاده از تکنیکهای پراش پرتوی ایکس، طیفسنج مادون قرمز تبدیل فوریه، آنالیز حرارتی همزمان، طیفسنج نشر اتمی پلاسمای جفتشده القایی، طیفسنجی پراش انرژی پرتو ایکس و میکروسکوپ الکترونی روبشی شناسایی شد. فعالیت کاتالیزوری نانوکامپوزیتهای تهیه شده، فسفومولیبدیک اسیدکپسولهشده در چارچوب آلی-فلزی بر پایه آهن (Ⅲ(، PMA@MIL-53(Fe)، از طریق واکنش استریشدن اسید اولئیک با اتانول تحت تابش فراصوت مورد آزمایش قرارگرفت. فرآیند تولید بیودیزل با استفاده از مقادیر مشخصی از نسبت مولی اسید اولئیک و اتانول، نانوکامپوزیتPMA@MIL-53(Fe) به عنوان کاتالیزور (50-200 میلی گرم) که حاوی مقادیر مختلف اسید فسفومولیبدیک، PMA (0-40%) است، با میزان مشخصی از انرژی مصرفی برحسب وات، در زمانهای مختلف (5-25 دقیقه) در دمای محیط، تحت شرایط اولتراسوند بهینهسازی شد. نتایج بهدست آمده حاکی از آن است که نمونههای کامپوزیت سنتزشده فعالیت کاتالیزوری عالی را نشان میدهند. و همچنین کارایی کاتالیزورهای ناهمگن همراه با تابش فراصوت برای تولید بیودیزل بطور چشمگیری افزایش مییابد. نتایج نشان داد که افزایش همه پارامترها موجب افزایش بازدهی فرایند تا مقادیر 98 درصد میشوند. | ||
کلیدواژهها | ||
کاتالیزورناهمگن؛ اسید فسفومولیبدیک؛ چارچوب آلی-فلزی؛ PMA@MIL-53(Fe)؛ واکنش استریشدن؛ بیودیزل | ||
عنوان مقاله [English] | ||
Biodiesel production by a novel composite of Fe (III)-based MOF and phosphomolybdic acid as an efficient and heterogeneous catalyst | ||
نویسندگان [English] | ||
Soraya Parak1؛ Ahmad Nikseresht2؛ mohammad alikarami1 | ||
1Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran | ||
2Department of Chemistry, Payame Noor University (PNU), P.OBox: 19395-4697 Tehran, Iran | ||
چکیده [English] | ||
The synthesis of MIL-53(Fe) samples and encapsulation process of phosphomolybdic acid implemented using ultrasound at ambient temperature and atmospheric pressure. Characterization of newly synthesized nanocomposite was carried out using various techniques such as XRD, FT-IR, SEM, EDS, BET and ICP. The catalytic activity of the prepared nanocomposites, PMA@MIL-53(Fe), was tested through the esterification reaction of oleic acid with ethanol under ultrasonic irradiation. Biodiesel production process using certain molar ratio of oleic acid/ethanol, PMA@MIL-53(Fe) as catalyst (10-200 mg) containing different amounts of PMA (0-40%), at different reaction times (5-20 minutes), total energy consumption (in watts, W) and ambient temperature under ultrasound conditions. The operating conditions of each of parameters were varied to study their effects on product yield. The results indicated that the synthesized composites show excellent catalytic activity. by encapsulating heteropoly acids in the MOF network, the challenges of using heteropoly acids, such as low contact surface and high solubility, are largely eliminated. The use of heteropoly acids in the industrial scales shows promise, provided the mentioned problems can be overcome | ||
کلیدواژهها [English] | ||
Phosphomolybdic acid, Biodiesel, Metal-organic framework, PMA@MIL-53(Fe), Heteropoly acid, heterogeneous catalyst | ||
مراجع | ||
[1] Mujtaba, M.A., Muk Cho Haeng, Masjuki, H.H., Masjuki, M.A., Ong, H.C., Gul, M., Harith, M.H., Yusoff, M.N.A.M. (2020). Critical review on sesame seed oil and its methyl ester on cold flow and oxidation stability. Energy Rep. 6, 40-54.
[2] Ma, F., Hanna, M.A. (1999). Biodiesel production: a review. Bioresour. Technol. 70 (1), 1-15.
[3] Aransiola, E., Ojumu, T., Oyekola, O., Madzimbamuto, T., Ikhu-Omoregbe, D. (2014). A Review of Current Technology for Biodiesel Production: State of the Art. Biomass Bioenergy 61, 276-297.
[4] Meira, M., Quintella, C.M., Ribeiro, E.M.O., Silva, H.R.G., Guimarães, A.K. (2015). Overview of the challenges in the production of biodiesel. Biomass Conv. Bioref. 5, 321-329.
[5] Abbasi, S., Diwekar, U.M. (2014). Characterization and stochastic modeling of uncertainties in the biodiesel production. Clean Technol Environ Policy 16, 79-94.
[6] Mohapatra, S., Das, P., Swain, D., Satapathy, S., Sahu, S.R. (2016). A review on rejuvenated techniques in biodiesel production from vegetable oils. Int. J. Curr. Eng. Technol. 6, 100-111.
[7] Oh, P.P., Lau, H.L.N., Chen, J., Chong, M.F., Choo, Y.M. (2012). A review on conventional technologies and emerging process intensification (PI) methods for biodiesel production. Renewable Sustainable Energy Rev. 16 (7), 5131-5145.
[8] Vyas, A.P., Verma, J.L., Subrahmanyam, N. (2010). A review on FAME production processes. Fuel. 89 (1), 1-9.
[9] Talebian-Kiakalaieh, A., Amin, N.A.S., Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Appl. Energy 104, 683-710.
[10] Saleh, J., Tremblay, A.Y., Dubé, M.A. (2010). Glycerol removal from biodiesel using membrane separation technology. Fuel 89 (9), 2260-2266.
[11] Nikseresht, A., Daniyali, A., Ali-Mohammadi, M., Afzalinia, A., Mirzaie, A. (2017). Ultrasound-assisted biodiesel production by a novel composite of Fe (III)-based MOF and phosphotangestic acid as efficient and reusable catalyst. Ultrason. Sonochem. 37, 203-207.
[12] Afzalinia, A., Mirzaie, A., Nikseresht, A., Musabeygi, T. (2017). Ultrasound-assisted oxidative desulfurization process of liquid fuel by phosphotungstic acid encapsulated in a interpenetrating amine-functionalized Zn (II)-based MOF as catalyst. Ultrason. Sonochem.34, 713-720.
[13] Maddikeri, G.L., Pandit, A.B., Gogate, P.R. (2012). Intensification Approaches for Biodiesel Synthesis from Waste Cooking Oil: A Review. Ind. Eng. Chem. Res. 51 (45), 14610-14628.
[14] D’Alessandro, B., Bidini, G., Zampilli, M., Laranci, P., Bartocci, P., Fantozzi, F. (2016). Straight and waste vegetable oil in engines: Review and experimental measurement of emissions, fuel consumption and injector fouling on a turbocharged commercial engine. Fuel 182, 198-209.
[15] Tan, S.X., Lim, S., Ong, H.C., Pang, Y.L. (2019). State of the art review on development of ultrasound-assisted catalytic transesterification process for biodiesel production. Fuel. 235, 886-907.
[16] Ramachandran, K., Suganya, T., Gandhi, N.N., Renganathan, S. (2013). Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review. Renewable Sustainable Energy Rev. 22, 410-418.
[17] Choudhury, R., Goswami, P.P., Malani, R.S., Moholkar, V.S. (2014). Ultrasonic biodiesel synthesis from crude Jatropha curcas oil with heterogeneous base catalyst: Mechanistic insight and statistical optimization. Ultrason. Sonochem. 21 (3), 1050-1064.
[18] Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., Yazaydin, A.O., Snurr, R.Q., O'Keeffe, M., Kim, J., Yaghi, O.M. (2010). Ultrahigh Porosity in Metal-Organic Frameworks. Science 329, 424-428.
[19] Sánchez-Sánchez, M., Getachew, N., Díaz, K., Díaz-García, M., Chebude, Y., Díaz, I. (2015). Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources. Green Chem. 17, 1500-1509.
[20] Nikseresht, A., Aderang, E. (2021). Encapsulation of phosphotungstic acid in the nanostructure of metal-organic framework as a heterogonous catalyst used for Fries rearrangement of O-acyloxy benzenes in para-situation. J. Of Applied Chemistry 16 (61), 25-38. in Persian.
[21] Nikseresht, A., Ghasemi, S., Parak, S. (2018). [Cu3(BTC)2]: A metal–organic framework as an environment-friendly and economically catalyst for the synthesis of tacrine analogues by Friedländer reaction under conventional and ultrasound irradiation. Polyhedron 151, 112-117.
[22] Ghasemi, S., Yousefi, M., Nikseresht, A., Omidi, H. (2021). Covalent binding and in-situ immobilization of lipases on a flexible nanoporous material. Process Biochem. 102, 92-101.
[23] Gaikwad, N.D., Gogate, P.R., (2015). Synthesis and application of carbon based heterogeneous catalysts for ultrasound assisted biodiesel production. Green Process Synth. 4, 17-30.
[24] Mahmoudi, J., Lotfollahi, M. N., Haghighi Asl, A. (2014). Experimental investigation of benzene alkylation in benzene cut by propylene over ZSM-5 zeolite as catalyst. J. Of Applied Chemistry, 31, 19-30, in Persian.
[25] Hossaini, Z., Shafaei, F., Sheikholeslami-Farahani, F., Ghasemi, N. (2020). Fe3O4-magnetic nanoparticles from essential oil of Orange peel catalyzed Green synthesis of pyridine derivatives: study of antioxidant activity of some synthezised compounds. J. Of Applied Chemistry, 54, 243-256, in Persian.
[26] Haghighi Asl, A., Ahmadpour, A., Fallah, N. (2017). Synthesis of Nano N-TiO2 for modeling of petrochemical industries spent caustic wastewater photocatalitic treatment in visible light using DOE method. J. Of Applied Chemistry, 42, 253-286, in Persian.
[27] Veisi, H., Nikseresht, A., Ahmadi, N., Khosravi, K., Saeidifar, F. (2019). Suzuki–Miyaura reaction by heterogeneously supported Pd nanoparticles on thio-modified multi walled carbon nanotubes as efficient nanocatalyst. Polyhedron, 162, 240-244.
[28] Veisi, H., Nikseresht, A., Mohammadi, S., Hemmati, S. (2018). Facile in-situ synthesis and deposition of monodisperse palladium nanoparticles on polydopamine-functionalized silica gel as a heterogeneous and recyclable nanocatalyst for aerobic oxidation of alcohols. Chinese J. Catal. 39, 1044-1050.
[29] Lotfi, S., Nikseresht, A., Rahimi, N. (2019). Synthesis of Fe3O4@ SiO2/isoniazid/Cu (II) magnetic nanocatalyst as a recyclable catalyst for a highly efficient preparation of quinolines in moderate conditions. Polyhedron, 173, 114148.
[30] Veisi, H., Nikseresht, A., Rostami, A., Hemmati, S. (2019) Fe3O4@PEG core/shell nanoparticles as magnetic nanocatalyst for acetylation of amines and alcohols using ultrasound irradiations under solvent-free conditions. Res. Chem. Intermed. 45, 507-520.
[31] Gordon, J., Kazemian, H., Rohani, S. (2012). Rapid and efficient crystallization of MIL-53(Fe) by ultrasound and microwave irradiation. Micropor. Mesopor. Mat. 162, 36-43.
[32] Jing, X., Li, Z., Lu, B., Han, Y., Chi, Y., Hu, C. (2020). Assembly of polyoxometalate with graphene foam as a compressible monolithic catalyst for biodiesel production. APPL. CATAL. A-GEN. 598, 117613.
[33] Masoumi, S., Farshchi Tabrizi, F., Sardarian, A. R. (2020). Efficient tetracycline hydrochloride removal by encapsulated phosphotungstic acid (PTA) in MIL–53 (Fe): Optimizing the content of PTA and recycling study. J. Environ. Chem. Eng. 8, 103601.
[34] Zhang, Q., Yue, C., Pu, Q., Yang, T., Wu, Z., Zhang, Y. (2019). Facile Synthesis of Ferric-Modified Phosphomolybdic Acid Composite Catalysts for Biodiesel Production with Response Surface Optimization. ACS Omega. 4, 9041-9048.
[35] Pukale, D.D., Maddikeri, G.L., Gogate, P.R., Pandit, A.B., Pratap, A.P. (2015). Ultrasound assisted transesterification of waste cooking oil using heterogeneous solid catalyst. Ultrason. Sonochem. 22, 278-286.
[36] Gupta, A.R., Yadav, S.V., Rathod, V.K. (2015). Enhancement in biodiesel production using waste cooking oil and calcium diglyceroxide as a heterogeneous catalyst in presence of ultrasound. Fuel 158, 800-806.
[37] Yadav, A.K., Khan, M.E., Pal, A., Singh, B. (2018). Ultrasonic-assisted optimization of biodiesel production from Karabi oil using heterogeneous catalyst. Biofuels, 1, 101-112.
[38] Jogi, R., Murthy, Y.S., Satyanarayana, M., Rao, T.N., Javed, S. (2016) Biodiesel production from degummed Jatropha curcas oil using constant-temperature ultrasonic water bath. Energy Sources Part A 38, 2610-2616.
[39] Maneechakr, P., Samerjit, J., Karnjanakom, S. (2015). Ultrasonic-assisted biodiesel production from waste cooking oil over novel sulfonic functionalized carbon spheres derived from cyclodextrin via one-step: a way to produce biodiesel at short reaction time. RSC Adv. 5, 55252-55261.
[40] Parida, S., Sahu, D.K., Misra, P.K. (2016). A rapid ultrasound-assisted production of biodiesel from a mixture of Karanj and soybean oil. Energy Sources Part A 38, 1110-1116.
[41] Martinez-Guerra, E., Gude, V.G. (2015). Continuous and pulse sonication effects on transesterification of used vegetable oil. Energy Convers. Manage. 96, 268-276.
[42] Khosravi, E., Shariati, A., Nikou, M.R.K. (2016). Instant biodiesel production from waste cooking oil under industrial ultrasonic irradiation. Int J Oil Gas Coal Technol. 11, 308-317.
[43] Kiss, A.A. (2009). Novel process for biodiesel by reactive absorption. Sep. Purif. Technol. 69, 280-287.
[44] Baskar, G., Aiswarya, R. (2016). Trends in catalytic production of biodiesel from various feedstocks. Renewable Sustainable Energy Rev. 57, 496-504.
[45] Parak, S., Nikseresht, A., Alikarami, M., Ghasemi, S. (2022). RSM optimization of biodiesel production by a novel composite of Fe (ΙΙΙ)-based MOF and phosphomolybdic acid. Res Chem Intermed. 48, 3773-3793.
[46] Nikseresht, A., Mirzaei, N., Masoumi, S., Azizi, H.R. (2022). Response Surface Methodology Optimization of Friedel–Crafts Acylation Using Phosphotungstic Acid Encapsulation in a Flexible Nanoporous Material. ACS Mater. Au 3, 123-131. | ||
آمار تعداد مشاهده مقاله: 2,126 تعداد دریافت فایل اصل مقاله: 552 |