تعداد نشریات | 21 |
تعداد شمارهها | 593 |
تعداد مقالات | 8,812 |
تعداد مشاهده مقاله | 66,759,682 |
تعداد دریافت فایل اصل مقاله | 7,325,202 |
Common fixed points for hybrid pair of generalized non-expensive mappings by a three-step iterative scheme | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 8، دوره 15، شماره 3، خرداد 2024، صفحه 91-102 اصل مقاله (375.29 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.21245.3444 | ||
نویسندگان | ||
Fayyaz Rouzkard* 1؛ Mohammad Imdad2 | ||
1Department of Mathematics, Farhangian University, Tehran, Iran | ||
2Department of Mathematics, Aligarh Muslim University, Aligarh, 202002, India | ||
تاریخ دریافت: 28 فروردین 1401، تاریخ پذیرش: 23 شهریور 1401 | ||
چکیده | ||
In this paper, we introduce a three-step iterative scheme, called the MF-iteration process to approximate a common fixed point for a hybrid pair $\{\tau, T\}$ of single-valued and multi-valued maps satisfying a generalized contractive condition defined on uniformly convex Banach spaces. We establish the strong convergence theorem for the proposed process under some basic boundary conditions. We give a numerical example to prove our results' convergence rate. Further, we compare the convergence speed of Sokhuma and Kaewkhao [29] and MF-iterations. we show numerically that the considered iterative scheme converges faster than Sokhuma and Kaewkhao [29] for single-valued and multi-valued non-expansive mappings. Our newly proven results generalize several relevant results in the literature. | ||
کلیدواژهها | ||
uniformly convex Banach spaces؛ Suzuki's Generalized Non-Expansive؛ Three-step iterative scheme؛ Common fixed point | ||
مراجع | ||
[1] M. Abbas and T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mater. Vesn. 66 (2014), 223–234. [2] R.P. Agarwal, D. O’ Regan, and V. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal. 8 (2007), 61–79. [3] F.E. Browder, Non-expansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci. USA 54 (1965), 1041–1044. [4] F.E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 660–665. [5] G. Das and J.P. Debata, Fixed points of quasi-nonexpansive mappings, Indian J. Pure Appl. Math. 17 (1986), 1263–1269. [6] S. Dhompongsa, A. Kaewcharoen and A. Kaewkhao, The Domenguez-Lorenzo condition and multivalued nonexpansive mappings, Nonlinear Anal. Theory Meth. Appl. 64 (2006), no. 5, 958–970. [7] W.G. Dotson, On the Mann iterative process, Trans. Amer. Math. Soc. 149 (1970) 65–73. [8] J. Garcia-Falset, E. Llorens-Fuster, and T. Suzuki, Fixed point theory for a class of generalized non-expansive mappings, J. Math. Anal. Appl. 375 (2011), 185–195. [9] P. Gholamjiak, W. Gholamjiak, Y.J. Cho and S. Suantai, Weak and strong convergence to common fixed points of a countable family of multi-valued mappings in Banach spaces, Thai j. Math. Appl. 9 (2011), 505–520. [10] W. Gholamjiak and S. Suantai, Approximation of common fixed points of two quasi non-expansive multi-valued maps in Banach spaces, Comput. Math. Appl. 61 (2011), no. 4, 941–949. [11] L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer, Dordrecht, 1999. [12] F. Gursoy and V. Karakaya, A Picard S-hybrid type iteration method for solving differential equation with retarded argument, Filomat 30 (2016), no. 10, 2829–2845. [13] T. Hu, J.C. Huang and B.E. Rhoades, A general principle for Ishikawa iterations for multivalued mappings, Indian J. Pure Appl. Math. 28 (1997), no. 8, 1091–1098. [14] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147–150. [15] S. Ishikawa, Fixed point and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59 (1976), 65–71. [16] T. Kaczynski, Multivalued maps as a tool in modeling and rigorous numerics, J. Fixed Point Theory Appl. 4 (2008), 151–176. [17] S.H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory Appl. 2013 (2013), 69. [18] S.H. Khan and W. Takahashi, Approximating common fixed points of two asymptotically nonexpansive mappings, Sci. Math. Jpn. 53 (2001), no. 1, 143–148. [19] T.C. Lim, A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex Banach spaces, Bull. Am. Math. Soc. 80 (1974), 1123–1126. [20] W.R. Mann, Mean value methods in iterations, Proc. Amer. Math. Soc. 4 (1953), 506–510. [21] J.T. Markin, Continuous dependence of fixed point sets, Proc. Amer. Math. Soc. 38 (1973), 545–547. [22] S.B. Nadler, Multivalued contraction mappings, Pac. J. Math. 30 (1969), 475–488. [23] M.A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000), 217–229. [24] B. Panyanak, Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces, Comput. Math. Appl. 54 (2007), no. 6, 872–877. [25] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274–276. [26] D.R. Sahu and A. Petrusel, Strong convergence of iterative methods by strictly pseudocontractive mappings in Banach spaces, Nonlinear Anal.: Theory Meth. Appl. 74 (2011), no. 17, 6012–6023. [27] K.P.R. Sastry and G.V.R. Babu, Convergence of Ishikawa iterates for a multi-valued mapping with a fixed point, Czechoslovak Math. J. 55 (2005), no. 4, 817–826. [28] N. Shahzad and H. Zegeye, On Mann and Ishikawa iteration schemes for multi-valued maps in Banach spaces, Nonlinear Anal. Theory Math. Appl. 71 (2009), no. 3-4, 838–844. [29] K. Sokhuma and A. Kaewkhao, Ishikawa iterative process for a pair of single-valued and multivalued nonexpansive mappings in Banach spaces, Fixed Point Theory Appl. 2010 (2010), 1–9. [30] Y. Song and H. Wang, Convergence of iterative algorithms for multivalued mappings in Banach spaces, Nonlinear Anal. Theory Math. Appl. 70 (2009), no. 4, 1547–1556. [31] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 340 (2008), 1088–1095. [32] W. Takahashi, Iterative methods for approximation of fixed points and their applications, J. Oper. Res. Soc. Jpn. 43 (2000), no. 1, 87–108. [33] W. Takahashi and T. Tamura, Convergence theorems for a pair of nonexpansive mappings, J. Convex Anal. 5 (1998), no. 1, 45–58. [34] K.K. Tan and H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301–308. [35] B.S. Thakur, D. Thakur, M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings, Appl. Math. Comp. 275 (2016), 147–155. | ||
آمار تعداد مشاهده مقاله: 14,137 تعداد دریافت فایل اصل مقاله: 247 |