تعداد نشریات | 21 |
تعداد شمارهها | 593 |
تعداد مقالات | 8,812 |
تعداد مشاهده مقاله | 66,762,988 |
تعداد دریافت فایل اصل مقاله | 7,326,078 |
A new faster iteration process to fixed points of generalized α-nonexpansive mappings in Banach spaces | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 1، دوره 15، شماره 5، مرداد 2024، صفحه 1-10 اصل مقاله (365.61 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.23025.2460 | ||
نویسندگان | ||
Asghar Rahimi1؛ Ali Rezaei2؛ Bayaz Daraby2؛ Mostafa Ghasemi* 2 | ||
1Department of Mathematics, University of Maragheh, Maragheh, Iran | ||
2Department of Mathematics, University of Maragheh, Maragheh, Iran | ||
تاریخ دریافت: 12 فروردین 1400، تاریخ بازنگری: 15 مرداد 1400، تاریخ پذیرش: 30 مرداد 1400 | ||
چکیده | ||
In this paper, we introduce a new iterative scheme to approximate the fixed point of generalized α-nonexpansive mappings. we first prove that the proposed iteration process is faster than all of Picard, Mann, Ishikawa, Noor, Agarwal, Abbas and Thakur processes for contractive mappings. We also obtain some weak and strong convergence theorems for generalized α-nonexpansive mappings. Using the example presented in [R. Pant and R. Shukla, Approximating fixed point of generalized α-nonexpansive mappings in Banach spaces, J. Numer. Funct. Anal. Optim. 38(2017) 248-266.], we compare the convergence behavior of the new iterative process with other iterative processes. | ||
کلیدواژهها | ||
Uniformly convex Banach space؛ Convergence theorem؛ Generalized α-nonexpansive mapping؛ Opial property؛ Iterative process | ||
مراجع | ||
[1] M. Abbas and T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mate. Vesnik 66 (2014), no. 2, 223–234. [2] R.P. Agarwal, D. O’Regan, and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal. 8 (2007), no. 1, 61–79. [3] K. Aoyama and F. Kohsaka, Fixed point theorem for α-nonexpansive mappings in Banach spaces, Nonlinear Anal. 74 (2011), 4387–4391. [4] D. Ariza-Ruiz, C. Hermandez Linares, E. Llorens-Fuster, and E. Moreno-Galvez, On α-nonexpansive mappings in Banach spaces, Carpath. J. Math. 32 (2016), 13–28. [5] V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators, Fixed Point Theory Appl. 2 (2004), 97–105. [6] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147–150. [7] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510. [8] M.A. Noor, New approximation schemes for general variational inequalities, J. Math.Anal. Appl. 251 (2000), no. 1, 217–229. [9] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Mathe. Soc. 73 (1967), 591–597. [10] R. Pant and R. Shukla, Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim.: Int. J. 38 (2017), no. 2, 248–266. [11] D.R. Sahu, Applications of the S-iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theory 12 (2011), no. 1, 187–204. [12] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43 (1991), 153–159. [13] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. −340- (2008), 1088–1095. [14] W. Takahashi, Nonlinear Functional Analysis, Yokohoma Publishers, Yokohoma, 2000. [15] B.S. Thakur, D. Thakur and M. Postolache, A new iteration scheme for approximating fixed points of nonexpansive mappings, Filomat 30 (2016), 2711–2720. | ||
آمار تعداد مشاهده مقاله: 31,554 تعداد دریافت فایل اصل مقاله: 324 |