تعداد نشریات | 21 |
تعداد شمارهها | 593 |
تعداد مقالات | 8,812 |
تعداد مشاهده مقاله | 66,763,042 |
تعداد دریافت فایل اصل مقاله | 7,326,157 |
Characterization of multipliers on ${\star}$-algebras acting on orthogonal elements | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 5، دوره 15، شماره 5، مرداد 2024، صفحه 49-56 اصل مقاله (366.37 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.29973.4303 | ||
نویسندگان | ||
Abbas Zivari-Kazempour* ؛ Ahmad Minapoor | ||
Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran | ||
تاریخ دریافت: 29 بهمن 1401، تاریخ پذیرش: 16 خرداد 1402 | ||
چکیده | ||
Let $A$ be a Banach ${\star}$-algebra, $X$ be a Banach ${\star}$-$A$-bimodule and $T: A\longrightarrow X$ be a continuous linear map. In this paper, by using orthogonality conditions on $A$, we characterize the map $T$ on certain Banach algebra including $C^{\star}$-algebras, group algebras, standard operator algebras and Banach algebras that is generated by idempotents. We also characterize a continuous linear map from zero Jordan product determined Banach algebra $A$ into a Banach $A$-bimodule $X$, and give some applications of this result. | ||
کلیدواژهها | ||
${\star}$-algebra؛ Multiplier؛ Orthogonality؛ Commuting map | ||
مراجع | ||
[1] J. Alaminos, M. Bresar, J. Extremera and A.R. Villena, Maps preserving zero products, Studia Math. 193 (2009), 131–159. [2] J. Alaminos, M. Bresar, J. Extremera and A.R. Villena, Characterizing Jordan maps on C∗-algebras through zero products, Proc. Roy. Soc. Edinb. 53 (2010), 543–555. [3] J. Alaminos, M. Bresar, J. Extremera and A.R. Villena, Zero Jordan product determained Banach algebras, J. Aust. Math. Soc. 193 (2020), 1–14. [4] G. An, J. Li and J. He, Zero Jordan product determined algebras, Linear Algebra Appl. 475 (2015), 90–93. [5] M. Bresar, Multiplication algebra and maps determined by zero products, Linear Multilinear Algebras 60 (2012), no. 7, 763–768. [6] M. Burgos and J. Sanchez-Ortega, On mappings preserving zero products, Linear Multilinear Algebras, 61 (2013), no. 3, 323–335. [7] H.G. Dales, Banach Algebras and Automatic Continuity, LMS Monographs 24, Clarendon Press, Oxford, 2000. [8] B. Fadaee and H. Ghahramani, Linear maps on C⋆-algebras behaving like (anti-)derivations at orthogonal elements, Bull. Malays. Math. Sci. Soc. 38 (2019), no. 1, 155–164. [9] H. Farhadi, Characterizing left or right centralizers on ⋆-algebras through orthogonal elements, Math. Anal. Conv. Optim. 3 (2022), no. 1, 37–41. [10] H. Ghahramani and Z. Pan, Linear maps on ⋆-algebras acting on orthogonal element like derivations or antiderivations, Filomat 13 (2018), 4543–4554. [11] H. Ghahramani, Linear maps on group algebras determined by the action of the derivations or anti-derivations on a set of orthogonal element, Results Math. 73 (2018), 1–14. [12] H. Ghahramani, Lie centralizers at zero products on a class of operator algebras, Ann. Funct. Anal. 12 (2021), 34. [13] B. E. Johnson, An introduction to the theory of centralizers, Proc. London Math. Soc. 14 (1964), 299–320. [14] R. Larsen, An Introduction to the Theory of Multipliers, Berlin, New York, Springer-Verlag, 1971. [15] A. Zivari-Kazempour, Characterization of n-Jordan multipliers, Vietnam J. Math. 50 (2022), 87–94. [16] A. Zivari-Kazempour, Characterizing n-multipliers on Banach algebras through zero products, Int. J. Nonlinear Anal. Appl. 14 (2023), no. 1, 1071–1078. [17] A. Zivari-Kazempour and M. Valaei, Characterization of n-Jordan multipliers through zero products, J. Anal. 30 (2022), 1059–1067. | ||
آمار تعداد مشاهده مقاله: 31,685 تعداد دریافت فایل اصل مقاله: 168 |