تعداد نشریات | 21 |
تعداد شمارهها | 586 |
تعداد مقالات | 8,733 |
تعداد مشاهده مقاله | 66,594,676 |
تعداد دریافت فایل اصل مقاله | 7,153,135 |
Physical Overview of the Instability in Laminar Wall-Bounded Flows of Viscoplastic and Viscoelastic Fluids at Subcritical Reynolds Numbers | ||
Journal of Heat and Mass Transfer Research | ||
دوره 10، شماره 1 - شماره پیاپی 19، مرداد 2023، صفحه 135-146 اصل مقاله (565.63 K) | ||
نوع مقاله: Review Article | ||
شناسه دیجیتال (DOI): 10.22075/jhmtr.2023.31061.1455 | ||
نویسندگان | ||
Hamed Mirzaee* 1؛ Goodarz Ahmadi2؛ Roohollah Rafee1؛ Farhad Talebi1 | ||
1Faculty of Mechanical Engineering, Semnan University, Semnan, Iran | ||
2Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY, USA | ||
تاریخ دریافت: 05 تیر 1402، تاریخ بازنگری: 10 شهریور 1402، تاریخ پذیرش: 10 شهریور 1402 | ||
چکیده | ||
This paper reviews the latest findings on instability and subcritical transition to turbulence in wall-bounded flows (i.e., pipe Poiseuille flow, plane channel flow, and plane Couette flow). Among the non-Newtonian fluids, viscoelastic and viscoplastic fluids were investigated. The main focus was on the early stage of transitional flow and the appearance of coherent structures. The scaling of threshold disturbance amplitude for the onset of natural transition was discussed. In addition, the transition of Newtonian fluids was compared with that of non-Newtonian fluids. Accordingly, the scaling for the transition of viscoelastic (i.e., highly elastic) fluid can be shown as Ac=O(Wig), where Wi is the Weissenberg number, g≤-1 is a scaling constant, and Ac is the critical perturbation amplitude. Moreover, the viscoelastic fluid flow at high Re numbers (i.e., Re>>1) is more stable than the Newtonian fluid flow in terms of the critical disturbance magnitude. Interestingly, the scaling for instability of viscoplastic fluid can be read as Rec=O(Bib), where Bi is the Bingham number and b≤1 is a constant. It was noted that exploration of perturbations like vortices, streaks, and traveling waves together with their amplitudes could clarify the instability and transition process. Hence, this paper focused on physical behavior and realizations of the transitional flow. Finally, a summary of consequential implications and some open issues for future works were presented and discussed. | ||
کلیدواژهها | ||
Flow, Instability؛ Transition؛ Perturbation؛ Amplitude؛ Non-Newtonian fluids | ||
عنوان مقاله [English] | ||
مرور فیزیکی ناپایداری در جریان های محدود به دیوار سیالات ویسکوپلاستیک و ویسکوالاستیک در اعداد رینولدز زیر بحرانی | ||
چکیده [English] | ||
این مقاله آخرین یافته ها درباره ناپایداری و انتقال به آشفتگی زیر بحرانی در جریان های محدود به دیوار (جریان پوازی لوله، جریان کانال صفحه ای و جریان کوئت صفحه ای) را مرور می کند. از میان سیالات غیر نیوتنی، سیالات ویسکوپلاستیک و ویسکوالاستیک بررسی شدند. تمرکز اصلی بر مرحله ابتدایی جریان انتقالی و پدیدار شدن ساختارهای منظم بود. مرتبه سنجی دامنه اغتشاشات بحرانی برای شروع انتقال طبیعی مورد بحث قرار گرفت. علاوه بر این، انتقال سیالات نیوتنی با انتقال سیالات غیر نیوتنی مقایسه گردید. بر طبق آن، مرتبه سنجی برای انتقال سیالات ویسکوالاستیک (بسیار الاستیک) می تواند بصورت Ac=O(Wig) نشان داده شود که Wi عدد وایزنبرگ، g≤-1 یک ثابت و Ac دامنه اغتشاش بحرانی می باشند. همچنین جریان سیالات ویسکوالاستیک در اعداد رینولدز زیاد (Re>>1) از جریان سیالات نیوتنی از لحاظ اندازه اغتشاش بحرانی پایدارتر است. جالب توجه است که مرتبه سنجی برای انتقال سیالات ویسکوپلاستیک بصورت Rec=O(Bib) خوانده می شود که Bi عدد بینگهام و b≤1 یک ثابت می باشند. اشاره شد که بررسی اغتشاشاتی مانند گردابه ها، رگه ها و امواج در حال حرکت همراه با دامنه هایشان می تواند ناپایداری و فرایند انتقال را روشن نماید. به همین دلیل، این مقاله بر رفتار فیزیکی و مشاهدات جریان انتقالی متمرکز گردید. در انتها، خلاصه ای از نتایج مهم و برخی مسائل باز برای کارهای آینده ارائه و بحث شدند. | ||
کلیدواژهها [English] | ||
جریان, ناپایداری, انتقال, اغتشاش, دامنه, سیالات غیر نیوتنی | ||
مراجع | ||
[1] Eckert, M., 2021. Pipe flow: a gateway to turbulence. Arch. Hist. Exact Sci., 75, pp. 249–282.
[2] Ekman, V.W., 1911. On the change from steady to turbulent motion of liquids. Ark. Mat. Astron. Fys., 6(12), pp. 1–16.
[3] Pfenniger, W., 1961. Transition in the inlet length of tubes at high Reynolds numbers. In Boundary Layer and Flow Control, ed. GV Lachman, (pp. 970–80), New York: Pergamon.
[4] Kundu, P.K. and Cohen, I.M., 2008. Fluid mechanics. 4th ed.. Kidlington: Academic Press.
[5] Meseguer, A. and Trefethen, L.N., 2003. Linearized pipe flow to Reynolds number 107. J. Comput. Phys., 186 (1), pp. 178-197.
[6] Chandrasekhar, S., 1961. Hydrodynamic and hydromagnetic stability. Clarendon Press.
[7] John M.O., Obrist, D. and Kleiser, L., 2016. Secondary instability and subcritical transition of the leading-edge boundary layer. J. Fluid Mech., 792, pp. 682 – 711.
[8] White, F.M., 2006. Viscous Fluid Flow. 3rd ed. . New York: McGraw-Hill.
[9] Leal, L.G., 2007. Advanced transport phenomena: fluid mechanics and convective transport processes. Cambridge University Press.
[10] Chhabra, R.P. and Richardson, J.F., 2008. Non-Newtonian flow and applied rheology: engineering applications. Oxford: Butterworth-Heinemann.
[11] Draad, A.A., Kuiken, G.D.C. and Nieuwstadt, F.T.M., 1998. Laminar–turbulent transition in pipe flow for Newtonian and non-Newtonian fluids. J. Fluid Mech., 377, pp. 267-312.
[12] Masuda H., Ebata A. and Teramae K., 1993. Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of Al2O3, SiO2 and TiO2). Netsu Bussei., 7 (4), pp. 227-233.
[13] Pak B.C. and Cho Y.I., 1998. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf., 11, pp. 151-170.
[14] Mirzaee, H., Rafee, R., Rashidi, S. and Valipour, M.S., 2023. Two-phase modeling of low-Reynolds turbulent heat convection of Al2O3-water nanofluid in a 2-D helically corrugated channel. Chemical Engineering Communications, 210(4), pp. 634-654.
[15] Ellahi, R., 2013. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions. Applied Mathematical Modelling, 37, pp. 1451–1467.
[16] Majeed, A., Zeeshan, A., Alamri, S.Z. and Ellahi, R., 2018. Heat transfer analysis in ferromagnetic viscoelastic fluid flow over a stretching sheet with suction. Neural Comput. & Applic., 30, pp. 1947-1955.
[17] Shaheen, S., Maqbool, K., Ellahi, R. and Sait, S.M., 2021. Metachronal propulsion of non-Newtonian viscoelastic mucus in an axisymmetric tube with ciliated walls. Commun. Theor. Phys, 73(3), p.035006.
[18] Bhatti, M.M., Ishtiaq, F., Ellahi, R. and Sait, S.M., 2023. Novel Aspects of Cilia-Driven Flow of Viscoelastic Fluid through a Non-Darcy Medium under the Influence of an Induced Magnetic Field and Heat Transfer. Mathematics, 11(10), 2284.
[19] Mehdizadeh, A., Rahmati, A. and Sheikhzadeh, G., 2021. Simulation and comparison of non-Newtonian fluid models using LBM in a cavity. Journal of Heat and Mass Transfer Research, 8(1), pp. 115-125.
[20] Nemati, M., Sefid, M. and Rahmati, A., 2021. Analysis of the effect of periodic magnetic field, heat absorption/generation and aspect ratio of the enclosure on non-Newtonian natural convection. Journal of Heat and Mass Transfer Research, 8(2), pp. 187-203.
[21] Bingham, E.C., 1922. Fluidity and plasticity. McGraw-Hill.
[22] Mase, G.E., 1970. Schaum’s Outline of Theory and Problems of Continuum mechanics. New York: McGraw-Hill.
[23] Bird, R.B., Armstrong, R.C. and Hassager, O., 1987. Dynamics of polymeric liquids, Vol. 1: Fluid mechanics. John Wiley & Sons.
[24] Drazin, P.G. and Reid, W.H., 2004. Hydrodynamic stability. Cambridge university press.
[25] Escudier, M., 2017. Introduction to Engineering Fluid Mechanics, 1st ed., Oxford University Press.
[26] Romanov, V.A., 1972. Stability of plane-parallel Couette flow. Funct. Anal. Applics., 7, pp. 137–146.
[27] Graebel, W. P., 1964. The hydrodynamic stability of a Bingham fluid in Couette flow. In M. Reiner & D. Abir (Eds.), Proceedings of International Symposium on 2nd Order Effects in Elasticity, Plasticity and Fluid Dynamics, Haifa, Israel, April 23–27, 1962, (pp. 636–649), New York: Macmillan.
[28] Landry, M. P., Frigaard, I. A. and Martinez, D. M., 2006. Stability and instability of Taylor–Couette flows of a Bingham fluid. J. Fluid Mech., 560, pp. 321-353.
[29] Orszag, S. A., 1971. Accurate solution of the Orr-Sommerfeld stability equation. J. Fluid Mech., 50(4), pp. 689-703.
[30] Frigaard, I.A., Howison, S.D. and Sobey, I.J., 1994. On the stability of Poiseuille flow of a Bingham fluid. J. Fluid Mech., 263, pp. 133-150.
[31] Davey, A. and Drazin, P.G., 1969. The stability of Poiseuille flow in a pipe. J. Fluid Mech., 36, pp. 209-218.
[32] Schmid, P.J. and Henningson, D.S., 2001. Stability and Transition in Shear Flows. New York: Springer.
[33] Chapman, S.J., 2002. Subcritical transition in channel flows. J. Fluid Mech., 451, pp. 35-97.
[34] Nouar, C. and Frigaard, I.A., 2001. Nonlinear stability of Poiseuille flow of a Bingham fluid: theoretical results and comparison with phenomenological criteria. J. Non-Newton. Fluid Mech., 100, pp. 127–149.
[35] Park, J.T., Mannheimer, R.J., Grimley, T. A. and Morrow, T.B., 1989. Pipe flow measurements of a transparent non-Newtonian slurry. J. Fluids Eng., 111(3), pp. 331-336.
[36] Escudier, M. P. and Presti, F., 1996. Pipe flow of a thixotropic liquid. J. Non-Newton. Fluid Mech., 62(2-3), pp. 291-306.
[37] Frigaard, I.A. and Nouar, C., 2003, April. Predicting Transition to Turbulence in Well Construction Flows, In SPE Latin American and Caribbean Petroleum Engineering Conference, Port-of-Spain, Trinidad and Tobago.
[38] Hanks, R. W., 1963. The laminar-turbulent transition for fluids with a yield stress. A.I.Ch.E. (Am. Inst. Chem. Engrs.) J., 9, TID-16087.
[39] Hanks, R. W., 1967. On the flow of Bingham plastic slurries in pipes and between parallel plates. Soc. Pet. Eng. J., 7(04), pp. 342-346.
[40] Hedström, B.O., 1952. Flow of plastic materials in pipes. Ind. Eng. Chem., 44(3), pp. 651-656.
[41] Frigaard, I.A. and Nouar, C., 2003. On three-dimensional linear stability of Poiseuille flow of Bingham fluids. Phys. Fluids, 15, 2843.
[42] Peixinho, J., Nouar, C., Desaubry, C. and Théron, B., 2005. Laminar transitional and turbulent flow of yield stress fluid in a pipe. J. Non-Newton. Fluid Mech., 128(2-3), pp. 172-184.
[43] Cross, M.M., 1965. Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J. colloid sci., 20(5), pp. 417-437.
[44] Nouar, C., Kabouya, N., Dusek, J. and Mamou, M., 2007. Modal and non-modal linear stability of the plane Bingham–Poiseuille flow. J. Fluid Mech., 577, pp. 211-239.
[45] Esmael, A. and Nouar, C., 2008. Transitional flow of a yield-stress fluid in a pipe: Evidence of a robust coherent structure. Phys. Rev. E, 77(5), 057302.
[46] Guzel, B., Burghelea, T., Frigaard, I.A. and Martinez, D.M., 2009. Observation of laminar–turbulent transition of a yield stress fluid in Hagen–Poiseuille flow. J. Fluid Mech., 627, pp. 97–128.
[47] Liu, R. and Liu, Q. S., 2014. Non-modal stability in Hagen-Poiseuille flow of a Bingham fluid. Phys. Fluids, 26(1), 014102.
[48] Bentrad, H., Esmael, A., Nouar, C., Lefevre, A. and Ait-Messaoudene, N., 2017. Energy growth in Hagen–Poiseuille flow of Herschel–Bulkley fluid. J. Non-Newton. Fluid Mech., 241, pp. 43-59.
[49] Singh, J., Rudman, M., Blackburn, H.M., 2017. The effect of yield stress on pipe flow turbulence for generalised Newtonian fluids. J. Non-Newton. Fluid Mech., 249, pp. 53-62.
[50] Mitishita, R.S., MacKenzie, J. A., Elfring, G.J. and Frigaard, I.A., 2021. Fully turbulent flows of viscoplastic fluids in a rectangular duct. J. Non-Newton. Fluid Mech., 293, 104570.
[51] Tanner, R.I., 2000. Engineering rheology. 2nd ed. Oxford University Press.
[52] Dubief, Y., Terrapon, V. E. and Hof, B., 2023. Elasto-inertial turbulence. Annu. Rev. Fluid Mech., 55.
[53] Lee, K.-C. and Finlayson, B.A., 1986. Stability of plane Poiseuille and Couette flow of a Maxwell fluid. J. Non-Newton. Fluid Mech., 21 (1), pp. 65–78.
[54] Renardy, M. and Renardy, Y., 1986. Linear stability of plane Couette flow of an upper convected Maxwell fluid. J. Non-Newton. Fluid Mech., 22, pp. 23–33.
[55] Porteous, K.C. and Denn, M.M., 1972. Linear stability of plane Poiseuille flow of viscoelastic liquids. Trans. Soc. Rheol., 16 (2), pp. 295–308.
[56] Ho, T.C. and Denn, M.M., 1977. Stability of plane Poiseuille flow of a highly elastic liquid. J. Non Newton. Fluid Mech., 3 (2), pp. 179–195.
[57] Hansen, R., 1973. Stability of laminar pipe flows of drag reducing polymer solutions in the presence of high-phase-velocity disturbances. AIChE J., 19 (2), pp. 298–304.
[58] Kupferman, R., 2005. On the linear stability of plane Couette flow for an Oldroyd-B fluid and its numerical approximation. J. Non-Newton. Fluid Mech., 127, pp. 169–190.
[59] Sureshkumar, R. and Beris, A.N., 1995b. Linear stability analysis of viscoelastic Poiseuille flow using an Arnoldi-based orthogonalization algorithm. J. Non-Newton. Fluid Mech., 56 (2), pp. 151–182.
[60] Escudier, M.P., Presti, F. and Smith, S., 1999. Drag reduction in the turbulent pipe flow of polymers. J. non-Newton. Fluid Mech., 81(3), pp. 197-213.
[61] Atalik, K. and Keunings, R., 2002. Non-linear temporal stability analysis of viscoelastic plane channel flows using a fully-spectral method. J. Non-Newton. Fluid Mech., 102, pp. 299-319.
[62] Govindarajan, R., L’vov, V.S., Procaccia, I. and Sameen, A., 2003. Stabilization of Hydrodynamic Flows by Small Viscosity Variations. Phys. Rev. E, 67, 026310.
[63] Meulenbroek, B., Storm, C., Morozov, A.N. and van Saarloos, W., 2004. Weakly nonlinear subcritical instability of visco-elastic Poiseuille flow. J. Non-Newton. Fluid Mech., 116, pp. 235-268.
[64] Morozov, A.N. and Van Saarloos, W., 2007. An introductory essay on subcritical instabilities and the transition to turbulence in visco-elastic parallel shear flows. Physics Reports, 447, pp. 112–143.
[65] Hoda, N., Jovanovic, M.R. and Kumar, S., 2008. Energy amplification in channel flows of viscoelastic fluids. J. Fluid Mech., 601, pp. 407- 424.
[66] Xi, L. and Graham, M. D., 2010. Turbulent drag reduction and multistage transitions in viscoelastic minimal flow units. J. Fluid Mech., 647, pp. 421-452.
[67] Zhang, M., Lashgari, I., Zaki, T.A. and Brandt, L., 2013. Linear stability analysis of channel flow of viscoelastic Oldroyd-B and FENE-P fluids. J. Fluid Mech., 737, pp. 249-279.
[68] Samanta, D., Dubief, Y., Holzner, M., Schäfer, C., Morozov, A. N., Wagner, C. and Hof, B., 2013. Elasto-inertial turbulence. PNAS, 110 (26), pp. 10557-10562.
[69] Garg, P., Chaudhary, I., Khalid, M., Shankar, V. and Subramanian, G., 2018. Viscoelastic Pipe Flow is Linearly Unstable. Phys. Rev. Lett., 121, 024502.
[70] Page, J., Dubief, Y. and Kerswell, R.R., 2020. Exact Traveling Wave Solutions in Viscoelastic Channel Flow. Phys. Rev. Lett., 125, 154501.
[71] Morozov, A. and Van Saarloos, W., 2019. Subcritical instabilities in plane Poiseuille flow of an Oldroyd-B fluid. J. Stat. Phys., 175, pp. 554-577.
[72] Shekar, A., McMullen, R. M., McKeon, B. J. and Graham, M.D., 2020. Self-sustained elastoinertial Tollmien–Schlichting waves. J. Fluid Mech., 897, A3.
[73] Chaudhary, I., Garg, P., Subramanian, G. and Shankar, V., 2021. Linear instability of viscoelastic pipe flow. J. Fluid Mech., 908, A11.
[74] Chandra, B., Shankar, V. and Das, D., 2018. Onset of transition in the flow of polymer solutions through microtubes. J. Fluid Mech., 844, pp. 1052-1083.
[75] Wan, D., Sun, G. and Zhang, M., 2021. Subcritical and supercritical bifurcations in axisymmetric viscoelastic pipe flows. J. Fluid Mech., 929, A16.
[76] Sánchez, H.A.C., Jovanović, M.R., Kumar, S., Morozov, A., Shankar, V., Subramanian, G. and Wilson, H.J., 2022. Understanding viscoelastic flow instabilities: Oldroyd-B and beyond. J. Non-Newton. Fluid Mech., 302, 104742.
[77] Buza, G., Page, J. and Kerswell, R.R., 2022. Weakly nonlinear analysis of the viscoelastic instability in channel flow for finite and vanishing Reynolds numbers. J. Fluid Mech., 940, p. A11.
[78] Dong, M. and Zhang, M., 2022. Asymptotic study of linear instability in a viscoelastic pipe flow. J. Fluid Mech., 935, A28.
[79] Datta, S.S., Ardekani, A.M., Arratia, P.E., Beris, A.N., Bischofberger, I., McKinley, G.H., Eggers, J.G., López-Aguilar, J.E., Fielding, S.M., Frishman, A. and Graham, M.D., 2022. Perspectives on viscoelastic flow instabilities and elastic turbulence. Phys. Rev. Fluids, 7(8), p.080701. | ||
آمار تعداد مشاهده مقاله: 666 تعداد دریافت فایل اصل مقاله: 384 |