- Tsoutsos, T., Frantzeskaki, N. and Gekas, V., 2005. Environmental impacts from the solar energy technologies. Energy Policy, 33(3), pp.289–296. doi:https://doi.org/10.1016/s03014215(03)00241-6.
- Wang, Q. and Qiu, H. N., 2009. Situation and outlook of solar energy utilization in Tibet, China. Renewable and Sustainable Energy Reviews, 13(8), pp.2181–2186. doi:https://doi.org/10.1016/j.rser.2009.03.011.
- Saidur, R., Islam, M.R., Rahim, N.A. and Solangi, K.H., 2010. A review on global wind energy policy. Renewable and Sustainable Energy Reviews, 14(7), pp.1744–1762. doi:https://doi.org/10.1016/j.rser.2010.03.007.
- Goel, V., Hans, V.S., Singh, S., Kumar, R., Pathak, S.K., Singla, M., Bhattacharyya, S., Almatrafi, E., Gill, R.S. and Saini, R.P., 2021. A comprehensive study on the progressive development and applications of solar air heaters. Solar Energy, doi:https://doi.org/10.1016/j.solener.2021.07.040.
- Dwivedi, A., Mishra, H., and Nagrath, V., 2021. A Review on Different Performance Enhancement Techniques for Solar Air Heaters. Recent Advances in Mechanical Engineering: Select Proceedings of ITME 2019, pp.1-9. DOI: 10.1007/978-981-15-8704-7_1.
- Sharma, S.L. and Debbarma, A., 2022. A review on thermal performance and heat transfer augmentation in solar air heater. International Journal of Sustainable Energy,41 (11), pp.1973-2019.https://doi.org/10.1080/14786451.2022.2125518.
- Chaurasia, S., Goel, V. and Debbarma, A., 2023. Impact of hybrid roughness geometry on heat transfer augmentation in solar air heater: A review. Solar Energy. shttps://doi.org/10.1016/j.solener.2023.02.052.
- Prasad, K. and Mullick, S.C., 1983. Heat transfer characteristics of a solar air heater used for drying purposes. Applied Energy, 13 (2), pp.83-93. https://doi.org/10.1016/0306-2619(83)90001-6.
- Bopche, S.B. and Tandale, M.S. 2009. Experimental investigations on heat transfer and frictional characteristics of a turbulator roughened solar air heater duct. International Journal of Heat and Mass Transfer, 52 (11-12), pp.2834-2848. https://doi.org/10.1016/j.ijheatmasstransfer.2008.09.039.
- Arulanandam, S.J., Hollands, K.T. and Brundrett, E., 1999. A CFD heat transfer analysis of the transpired solar collector under no-wind conditions. Solar Energy, 67 (1-3), pp.93-100. https://doi.org/10.1016/S0038092X(00)00042-6.
- Chaube, A., Sahoo, P.K. and Solanki, S.C. 2006. Analysis of heat transfer augmentation and flow characteristics due to rib roughness over absorber plate of a solar air heater. Renewable Energy, 31 (3), pp.317-331. https://doi.org/10.1016/j.renene.2005.01.012.
- Chaube, A., Sahoo, P.K. and Solanki, S.C., 2006. Effect of roughness shape on heat transfer and flow friction characteristics of solar air heater with roughened absorber plate. WIT Transactions on Engineering Sciences, 53, pp.43-51. doi:10.2495/HT060051.
- Varol, Y. and Oztop, H.F., 2008. A comparative numerical study on natural convection in inclined wavy and flat-plate solar collectors. Building and environment, 43 (9), pp.1535-1544. https://doi.org/10.1016/j.buildenv.2007.09.002.
- Kumar, S. and Saini, R.P., 2009. CFD based performance analysis of a solar air heater duct provided with artificial roughness. Renewable energy, 34 (5), pp.1285-1291. https://doi.org/10.1016/j.renene.2008.09.015.
- Karmare, S.V. and Tikekar, A.N., 2010. Analysis of fluid flow and heat transfer in a rib grit roughened surface solar air heater using CFD. Solar Energy, 84 (3), pp.409-417. https://doi.org/10.1016/j.solener.2009.12.011.
- Soi, A., Singh, R. and Bhushan, B., 2010. Effect of roughness element pitch on heat transfer and friction characteristics of artificially roughened solar air heater duct. International Journal of Advanced Engineering Technology, 1 (3), pp.339-346.
- Rajput, R. S., Bhagoria, J. L., Giri, A. K., Kumar, A., 2010. Study of heat transfer and friction characteristic of various artificial roughness in solar air heater duct by using computational fluid dynamics (CFD) software. In: Proceedings of international conference on advances in renewable energy, June 2010.
- Sharma, S., Singh, R. and Bhushan, B., 2011. CFD based investigation on effect of roughness element pitch on performance of artificially roughened duct used in solar air heaters. International Journal of Advanced Engineering Technology, 2 (1), pp.234-241.
- Gawande, V.B., Dhoble, A.S., Zodpe, D.B., and Chamoli, S., 2016. A review of CFD methodology used in literature for predicting thermo-hydraulic performance of a roughened solar air heater. Renewable and Sustainable Energy Reviews, 54, pp.550-605. https://doi.org/10.1016/j.rser.2015.10.025.
- Jhariya, K., Ranjan, R., and Paswan, M.K., 2015. A CFD based performance analysis of heat transfer enhancement in solar air heater provided with transverse semi-circular ribs. International Journal of Innovative Research in science, Engineering and Technology, 4, pp.4528-4537.
- Kumar, K., Kaushik, S. and Bisht, V.S., 2017. CFD analysis on solar air heater with artificial roughened broken curved ribs. International Journal of Scientific & Engineering Research, 8, pp.264-275.
- Bisht, N. and Bisht, V.S., 2018. CFD Analysis of Solar Air Heater Roughened With Crown Shape Roughness. Asian Journal of Applied Science and Technology,2 (3), pp.73-82.
- Ghildyal, A., Bisht, V.S., Bisht, A.S. and Kishor, K., 2020. Computational Fluid Dynamics Study of Roughened Solar Air Heater. Advanced Science, Engineering and Medicine, 12(11), pp.1408-1411. https://doi.org/10.1166/asem.2020.2595.
- Bisht, V.S., Patil, A.K. and Gupta, A., 2020. Thermo-Hydraulic Performance of Solar Air Heater Roughened with V-Shaped Ribs Combined with V-Shaped Perforated Baffles. In Advances in Energy Research, Vol. 2: Selected Papers from ICAER 2017, Springer Singapore, 123-132. DOI: 10.1007/978-981-15-2662-6_12.
- Bahuguna, R., Chamoli, S., Barthwal, Y., Rana, S., Gupta, A., and Bisht, V.S., 2022. Economic analysis of artificially roughened solar air heater with v-shaped ribs. Acta Innovations, 44, pp.18-33. https://doi.org/10.32933/ActaInnovations.44.2
- Bahuguna, R., Mer, K.K.S., Kumar, M., Chamoli, S., 2021. Thermohydraulic performance and second law analysis of a tube embedded with multiple helical tape inserts. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp.1–23. https://doi.org/10.1080/15567036.2021.1904057.
- Chamoli, S., Lu, R., Jin Xie, J., and Yu, P., 2018. Numerical Study on Flow Structure and Heat Transfer in a Circular Tube Integrated with Novel Anchor Shaped Inserts. Applied Thermal Engineering, 135, pp.304–24. https://doi.org/10.1016/j.applthermaleng.2018.02.052.
- Bahuguna, R., Mer, K.K.S., Kumar, M., Chamoli, S., 2021. Entropy generation analysis in a tube heat exchanger integrated with triple blade vortex generator inserts. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp.1–19. https://doi.org/10.1080/15567036.2021.1918291.
- Maithani, R. and Kumar, A., 2020. Correlations Development for Nusselt Number and Friction Factor in a Dimpled Surface Heat Exchanger Tube. Experimental Heat Transfer, 33 (2), pp.101–22. https://doi.org/10.1080/08916152.2019.1573863.
- Bahuguna, R., Mer, K.K.S., Kumar, M., Chamoli, S. (2022). Thermal performance of a circular tube embedded with TBVG inserts: an experimental study. Journal of Thermal Analysis and Calorimetry, 147(20), pp.11373-11389. https://doi.org/10.1007/s10973-022-11352-1.
- Singh, V. P., Jain, S. and Gupta, J.M.L., 2023. Analysis of the effect of perforation in multi-v rib artificial roughened single pass solar air heater: -Part A. Experimental Heat Transfer, 36(2), 163-182.https://doi.org/10.1080/08916152.2021.1988761.
- Singh, V. P., Jain, S. and Gupta, J.M.L., 2022. Analysis of the effect of variation in open area ratio in perforated multi-V rib roughened single pass solar air heater-Part A. Energy sources, part a: recovery, utilization, and environmental effects, pp.1-21. https://doi.org/10.1080/15567036.2022.2029976.
- Singh, V. P., Jain, S. and Gupta, J.M.L., 2022. Performance assessment of double-pass parallel flow solar air heater with perforated multi-V ribs roughness—Part B. Experimental Heat Transfer,35(7), pp.1059-1076. https://doi.org/10.1080/08916152.2021.2019147.
- Singh, V. P., Jain, S., Karn, A., Dwivedi, G., Kumar, A., Mishra, S. and Kamel, S., 2022. Heat transfer and friction factor correlations development for double pass solar air heater artificially roughened with perforated multi-V ribs. Case Studies in Thermal Engineering, 39, pp.102461. https://doi.org/10.1016/j.csite.2022.102461.
- Sarreshtedari, A. and Zamani Aghaee, A., 2014. Investigation of the thermo-hydraulic behavior of the fluid flow over a square ribbed channel. Journal of Heat and Mass Transfer Research, 1(2), pp.101-106.
- Noghrehabadi, A., Hajidavalloo, E. and Moravej, M., 2016. An experimental investigation of performance of a 3-D solar conical collector at different flow rates. Journal of Heat and Mass Transfer Research, 3(1), pp.57-66.
- Gupta, N.K. and Alam, T., 2021. A review on augmentation in thermal performance of solar water heater using phase change material. In IOP Conference Series: Materials Science and Engineering, 1116 (1), pp.012075. IOP Publishing. DOI 10.1088/1757-899X/1116/1/012075.
- Gupta, N. K. and Alam, T., 2021. A Review on Augmentation in Thermal Performance of Solar Air Heater. In IOP Conference Series: Materials Science and Engineering, 1116 (1), pp. 012064. IOP Publishing. DOI 10.1088/1757-899X/1116/1/012064.
- Karmveer, Gupta, N.K., Alam, T., Cozzolino, R. and Bella, G., 2022. A descriptive review to access the most suitable rib’s configuration of roughness for the maximum performance of solar air heater. Energies, 15(8), pp.2800. https://doi.org/10.3390/en15082800.
- Karmveer, Gupta, N.K., Siddiqui, M.I.H., Dobrotă, D., Alam, T., Ali, M.A. and Orfi, J., 2022. The effect of roughness in absorbing materials on solar air heater performance. Materials, 15 (9), pp.3088. https://doi.org/10.3390/ma15093088.
- Karmveer, Gupta, N.K., Alam, T. and Singh, H., 2022. An Experimental Study of Thermohydraulic Performance of Solar Air Heater Having Multiple Open Trapezoidal Rib Roughnesses. Experimental Heat Transfer, pp.1-21. https://doi.org/10.1080/08916152.2022.2139024.
- Gupta, N. K. and Alam, T., 2023. Experimental investigation of thermohydraulic performance of solar thermal collector for sustainable built environment. Sustainable Energy Technologies and Assessments, 57, pp.103257. https://doi.org/10.1016/j.seta.2023.103257.
- Karmveer, Gupta, N.K. and Alam, T., 2023. Development of correlations for predicting Nusselt number and friction factor of roughened solar air heater duct for sustainable development. Experimental Heat Transfer, pp.1-19.https://doi.org/10.1080/08916152.2023.2189329.
- Gupta, N. K. and Alam, T., 2023. Effect of relative rib roughness pitch on the thermohydraulic performance of roughened duct of solar air heater. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.01.310.
- Bhushan, B. and Singh, R., 2011. Nusselt number and friction factor correlations for solar air heater duct having artificially roughened absorber plate. Solar energy, 85(5), pp.1109-1118. https://doi.org/10.1016/j.solener.2011.03.007.
- Lanjewar, A., Bhagoria, J.L. and Sarviya, R.M., 2011a. Experimental study of augmented heat transfer and friction in solar air heater with different orientations of W-Rib roughness. Experimental Thermal and Fluid Science, 35(6), pp.986-995. https://doi.org/10.1016/j.expthermflusci.2011.01.019.
- Lanjewar, A., Bhagoria, J.L. and Sarviya, R.M., 2011b. Heat transfer and friction in solar air heater duct with W-shaped rib roughness on absorber plate. Energy, 36(7), pp.4531-4541. https://doi.org/10.1016/j.energy.2011.03.054.
- Kumar, A., Saini, R.P. and Saini, J.S., 2012. Experimental investigation on heat transfer and fluid flow characteristics of air flow in a rectangular duct with Multi v-shaped rib with gap roughness on the heated plate. Solar Energy, 86(6), pp.1733-1749. https://doi.org/10.1016/j.solener.2012.03.014.
- Yadav, S. and Kaushal, M., 2013. Nusselt number and friction factor correlations for solar air heater duct having protrusions as roughness elements on absorber plate. Experimental Thermal and Fluid Science, 44, pp.34-41. https://doi.org/10.1016/j.expthermflusci.2012.05.011.
- Karwa, R. and Chitoshiya, G., 2013. Performance study of solar air heater having v-down discrete ribs on absorber plate. Energy, 55, pp.939-955. https://doi.org/10.1016/j. energy.2013.03.068.
- Singh, A.P., 2014. Heat transfer and friction factor correlations for multiple arc shape roughness elements on the absorber plate used in solar air heaters. Experimental Thermal and Fluid Science, 54, pp.117-126. 10.1016/j. expthermflusci.2014.02.004.
- Yadav, A. S. and Bhagoria, J.L., 2014. A CFD based thermo-hydraulic performance analysis of an artificially roughened solar air heater having equilateral triangular sectioned rib roughness on the absorber plate. International Journal of Heat and Mass Transfer, 70, pp.1016-1039. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.074.
- Maithani, R. and Saini, J.S., 2017. Performance evaluation of solar air heater having V-ribs with symmetrical gaps in a rectangular duct of solar air heater. International Journal of Ambient Energy, 38(4), pp.400-410. https://doi.org/10.1080/01430750.2015.1133455.
- Pandey, N. K., Bajpai, V. K. and Varun, 2016. Heat transfer and friction factor study of a solar air heater having multiple arcs with gap-shaped roughness element on absorber plate. Arabian Journal for Science and Engineering, 41(11), pp.4517-4530. 10.1007/s13369-016-2148-9.
- Gawande, V. B., Dhoble, A.S., Zodpe, D.B. and Chamoli, S., 2016a. Analytical approach for evaluation of thermo hydraulic performance of roughened solar air heater. Case Studies in Thermal Engineering, 8, pp.19-31. https://doi.org/10.1016/j.csite.2016.03.003.
- Gawande, V.B., Dhoble, A.S., Zodpe, D.B. and Chamoli, S., 2016. Experimental and CFD-based thermal performance prediction of solar air heater provided with chamfered square rib as artificial roughness. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38 (2), pp.643-663. https://doi.org/10.1007/s40430-015-0402-9.
- Bharadwaj, G., Varun, Kumar, R. and Sharma, A., 2017. Heat transfer augmentation and flow characteristics in ribbed triangular duct solar air heater: An experimental analysis. International journal of green energy, 14(7), pp.587-598. https://doi.org/10.1080/15435075.2017.1307751.
- Sawhney, J.S., Maithani, R. and Chamoli, S., 2017. Experimental investigation of heat transfer and friction factor characteristics of solar air heater using wavy delta winglets. Applied thermal engineering, 117, pp.740-751. https://doi.org/10.1016/j.applthermaleng.2017.01.113.
- Gabhane, M.G. and Kanase-Patil, A.B., 2017. Experimental analysis of double flow solar air heater with multiple C shape roughness. Solar Energy, 155, pp.1411-1416. https://doi. org/10.1016/j.solener.2017.07.038.
- Kumar, R., Kumar, A. and Goel, V., 2017b. A parametric analysis of rectangular rib roughened triangular duct solar air heater using computational fluid dynamics. Solar Energy, 157, pp.1095-1107. https://doi.org/10.1016/j. solener.2017.08.071.
- Alam, T. and Kim, M.H., 2017. Heat transfer enhancement in solar air heater duct with conical protrusion roughness ribs. Applied Thermal Engineering, 126, pp.458-469. https://doi. org/10.1016/j.applthermaleng.2017.07.181.
- Thakur, D.S., Khan, M.K. and Pathak, M., 2017. Solar air heater with hyperbolic ribs: 3D simulation with experimental validation. Renewable Energy, 113, pp.357-368. https://doi. org/10.1016/j.renene.2017.05.096.
- Singh, I. and Singh, S., 2018. CFD analysis of solar air heater duct having square wave profiled transverse ribs as roughness elements. Solar Energy, 162, pp.442-453. 10.1016/j.solener.2018.01.019.
- Kumar, A. and Layek, A., 2018. Thermo-hydraulic performance of solar air heater having twisted rib over the absorber plate. International Journal of Thermal Sciences, 133, pp.181-195. https://doi.org/10.1016/j.ijthermalsci.2018.07.026.
- Soi, A., Singh, R. and Bhushan, B., 2018. Heat transfer and friction characteristics of solar air heater duct having protruded roughness geometry on absorber plate. Experimental Heat Transfer, 31(6), pp.571-585. https://doi.org/10.1080/08916152.2018.1468832.
- Abuşka, M., 2018. Energy and exergy analysis of solar air heater having new design absorber plate with conical surface. Applied Thermal Engineering, 131, pp.115-124. https://doi. org/10.1016/j.applthermaleng.2017.11.129.
- Debnath, S., Das, B. and Randive, P., 2019. Influences of pentagonal ribs on the performance of rectangular solar air collector. Energy Procedia, 158, pp.1168-1173. https:// doi.org/10.1016/j.egypro.2019.01.300.
- Singh, I., Vardhan, S., Singh, S. and Singh, A., 2019. Experimental and CFD analysis of solar air heater duct roughened with multiple broken transverse ribs: A comparative study. Solar Energy, 188, pp.519-532. https://doi.org/10.1016/j. solener.2019.06.022.
- Bezbaruah, P.J., Das, R.S. and Sarkar, B.K., 2019. Thermo-hydraulic performance augmentation of solar air duct using modified forms of conical vortex generators. Heat and Mass Transfer, 55 (5), pp.1387-1403. https:// doi.org/10.1007/s00231-018-2521-1.
- Kumar, R., Goel, V., Singh, P., Saxena, A., Kashyap, A. S. and Rai, A., 2019. Performance evaluation and optimization of solar assisted air heater with discrete multiple arc shaped ribs. Journal of Energy Storage, 26, pp.100978. https://doi.org/10.1016/j. est.2019.100978.
- Wang, D., Liu, J., Liu, Y., Wang, Y., Li, B. and Liu, J., 2020. Evaluation of the performance of an improved solar air heater with “S” shaped ribs with gap. Solar Energy, 195 (13), pp.89-101. https://doi.org/10.1016/j.solener.2019.11.034.
- Kumar, R., Kashyap, A. S., Singh, P., Goel, V. and Kumar, K., 2020. Innovatively arranged curved-ribbed solar-assisted air heater: performance and correlation development for heat and flow characteristics. Journal of Solar Energy Engineering, 142(3), pp.031011. https://doi.org/10.1115/1.4045827.
- Ahmad, I., Khan, N.H., Hassan, M.A. and Paswan, M.K., 2020. Three-dimensional thermo-hydraulic analysis of solar air heater with equilateral prism-shaped rib roughness. Journal of Solar Energy Engineering, 142(5), pp.051001. https://doi.org/ 10.1115/1.4046088.
- Ngo, T.T. and Phu, N.M., 2020. Computational fluid dynamics analysis of the heat transfer and pressure drop of solar air heater with conic-curve profile rib. Journal of Thermal Analysis and Calorimetry, 139 (5), pp.3235-3246. https://doi.org/10.1007/s10973-019- 08709-4.
- Rathor, Y. and Aharwal, K.R., 2020. Heat transfer enhancement due to a staggered element using liquid crystal thermography in an inclined discrete rib roughened solar air heater. International Communications in Heat and Mass Transfer, 118, pp.104839. https://doi. org/10.1016/j.icheatmasstransfer.2020.104839.
- Mahanand, Y. and Senapati, J.R., 2020. Thermal enhancement study of a transverse inverted-T shaped ribbed solar air heater. International Communications in Heat and Mass Transfer, 119, pp.104922.https://doi.org/10.1016/j.icheatmasstransfer.2020.104922.
- Mahanand, Y. and Senapati, J.R., 2021. Thermo-hydraulic performance analysis of a solar air heater (SAH) with quarter-circular ribs on the absorber plate: A comparative study. International Journal of Thermal Sciences, 161, pp.106747. https://doi.org/10.1016/j.ijthermalsci.2020.10674.
- Jain, S.K., Agrawal, G.D. and Misra, R., 2021. Heat transfer augmentation using multiple gaps in arc-shaped ribs roughened solar air heater: An experimental study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(24), pp.3345-3356. https://doi.org/10.1080/15567036.2019.1607945.
- Azad, R., Bhuvad, S. and Lanjewar, A., 2021. Study of solar air heater with discrete arc ribs geometry: Experimental and numerical approach. International Journal of Thermal Sciences, 167, pp.107013. https://doi.org/10.1016/j.ijthermalsci.2021.107013.
- Bhuvad, S.S., Azad, R. and Lanjewar, A., 2022. Thermal performance analysis of apex-up discrete arc ribs solar air heater-an experimental study. Renewable Energy, 185, pp.403-415. https://doi.org/10.1016/j.renene.2021.12.037.
- Arya, N. and Goel, V., 2023. Comparative study of V-ribs miniature with dimple hybrid roughness along with dimples shaped roughness used in solar air heating system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(2), pp.3297-3317. https://doi.org/10.1080/15567036.2023.2195822.
- Arya, N. Goel, V. and Sunden, B., 2023. Solar air heater performance enhancement with differently shaped miniature combined with dimple shaped roughness: CFD and experimental analysis. Solar Energy, 250, pp.33-50. https://doi.org/10.1016/j.solener.2022.12.024.
- Wood, J.N., De Nayer, G., Schmidt, S. and Breuer, M., 2016. Experimental investigation and large-eddy simulation of the turbulent flow past a smooth and rigid hemisphere. Flow, Turbulence and Combustion, 97, pp.79-119. doi:10.1007/s10494-015-9690-5.
- Chaube, A., Sahoo, P.K. and Solanki, S.C., 2006. Analysis of heat transfer augmentation and flow characteristics due to rib roughness over absorber plate of a solar air heater. Renewable Energy, 31 (3), pp.317-331. https://doi.org/10.1016/j.renene.2005.01.012.
- Standard, A.S.H.R.A.E., 1977. Methods of testing to determine the thermal performance of solar collectors. American Society of Heating, 93-77.
- Verma, S.K. and Prasad, B.N., 2000. Investigation for the optimal thermohydraulic performance of artificially roughened solar air heaters. Renewable Energy, 20 (1), pp.19-36. https://doi.org/10.1016/S09601481(99)00081-6.
- Kays, W.M., 1985. Forced convection, internal flow in ducts. Handbook of heat transfer fundamentals. https://cir.nii.ac.jp/crid/1570291225769794304.bib?lang=ja.
- Bhatti, M.S., 1987. Turbulent and transition flow convective heat transfer in ducts. Handbook of single-phase convective heat transfer. https://cir.nii.ac.jp/crid/1573387448915440896.bib?lang=ja.
- Webb, R.L. and Eckert, E.R.G., 1972. Application of rough surfaces to heat exchanger design. International Journal of Heat and Mass Transfer, 15, pp.647–1658, https://doi.org/10.1016/0017-9310 (72)90095-6.
- Yadav, A.S. and Bhagoria, J.L., 2014. A numerical investigation of square sectioned transverse rib roughened solar air heater. International Journal of Thermal Sciences, 79, pp.111-131. https://doi.org/10.1016/j.ijthermalsci.2014.01.008.
|