تعداد نشریات | 21 |
تعداد شمارهها | 583 |
تعداد مقالات | 8,685 |
تعداد مشاهده مقاله | 66,514,291 |
تعداد دریافت فایل اصل مقاله | 7,051,191 |
مکانیابی بهینه هندسی آشکارسازها در اطراف لولههای قطور هیدروکربنی برای تشخیص الگوی انباشت و اندازهگیری ضخامت رسوب با استفاده از روش گامای عبوری | ||
مدل سازی در مهندسی | ||
دوره 22، شماره 77، شهریور 1403، صفحه 69-78 اصل مقاله (865.57 K) | ||
نوع مقاله: مقاله مکانیک | ||
شناسه دیجیتال (DOI): 10.22075/jme.2023.30736.2466 | ||
نویسندگان | ||
رسمیه زینوی میان آبی1؛ عطاا... ربیعی2؛ محسن شریف زاده* 3 | ||
1کارشناس ارشد، دانشکده مهندسی مکانیک، دانشگاه شیراز | ||
2دانشیار، دانشکده مهندسی مکانیک، دانشگاه شیراز | ||
3استادیار، پژوهشکده کاربرد پرتوها، پژوهشگاه علوم و فنون هسته ای | ||
تاریخ دریافت: 19 خرداد 1402، تاریخ بازنگری: 19 آذر 1402، تاریخ پذیرش: 02 دی 1402 | ||
چکیده | ||
تضمین جریان همزمان با نیاز روزافزون به برداشت نفت و گاز از مخازن، یکی از چالشهای بزرگ است و در این بین انباشت رسوب درون خطوط لوله به-عنوان مشکلی بزرگ وجود دارد. از آنجایی که تجمع این رسوبات در مدت زمانی کوتاه صورت میگیرد نیاز به کنترل و پیشبینی آن درون خطوط لوله در کمترین زمان ممکن از اهمیت ویژه ای برخوردار است. برای پیشبینی الگوی انباشت رسوب و اندازه گیری ضخامت آن از روشهای مختلفی استفاده میشود که روش گامای عبوری یک روش غیرمخرب برای این کار است. رویکرد لازم در بکارگیری این روش، چینش بهینه آشکارساز و چشمه حول لوله است بهگونهای که در مدت زمانی کوتاه با بیشینه دقت ممکن بتوان فرایند اندازه گیری را انجام داد. ملاحظات هزینه ای، قابلیت بکارگیری سنجشگر در موقعیتهای مختلف روی سکو و زیر دریا، و کاهش دز جذبی اپراتور به زیر آستانه از دیگر پارامترهای مهم است که بهواسطه چینش بهینه چشمه-آشکارساز پیرامون لوله قابل دستیابی است. در این مطالعه با استفاده از ابزار تحلیل هندسی و شبیهسازی مونتکارلو نشان داده شد که بادبزنی از آشکارسازها با فاصله مشخص حول لوله می تواند منجر به اندازه گیری مطلوب رژیم انباشت و ضخامت رسوب گردد. | ||
کلیدواژهها | ||
الگوی انباشت رسوب؛ روش گامای عبوری؛ اندازهگیری ضخامت رسوب؛ چینش بادبزنی؛ چینش پلهای؛ خطای انتشار | ||
عنوان مقاله [English] | ||
Optimum Geometric Position of Detectors Around Thick Hydrocarbon Pipes for Deposition Pattern Detection and Scale Thickness Measurement | ||
نویسندگان [English] | ||
Rasmieh Zeinavi Mianabi1؛ Ataollah Rabiee2؛ Mohsen Sharifzadeh3 | ||
1Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran. | ||
2Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran. | ||
3Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran | ||
چکیده [English] | ||
Ensuring flow with the increasing need to extract oil and gas from reservoirs is known as a big challenge, and in the meantime, scale deposition in pipelines is a major problem. Since scale deposition occurs in a short time, it is especially important to control and predict it in pipelines as soon as possible. There are several methods for predicting the deposition pattern and measuring its thickness. The gamma transmission method is a non-destructive method for this task. The application of this technique requires optimal placement of the detectors and radioactive source around the pipe so that the measurement can be made with maximum accuracy in a short time. The cost, the ability to deploy the instrument at various positions on the platform and underwater, and minimization of absorbed dose to the operator are other important goals that should be considered. In this study, using the geometric analysis and Monte Carlo simulation, it is shown that the fan-shaped arrangement of the detectors with certain spacing around the pipe can lead to an optimal measurement of the deposition regime and the scale thickness. | ||
کلیدواژهها [English] | ||
Scale deposition pattern, Transmission gamma, Technique, Scale thickness, Measurement, Fan-shaped arrangement, Stepped arrangement, Propagation error | ||
مراجع | ||
[1] B. Bertrand, G. Ségéral, and P.O. Moksnes. "Detection and identification of scales using dual energy/venturi subsea or topside multiphase flow meters." In Offshore Technology Conference, pp. OTC-13152. OTC, 2001. [2] F.H. Almutairi, and D.R. Davies. "Detection of scale deposition using distributed temperature sensing." In SPE International Oilfield Scale Conference and Exhibition, pp. SPE-113595. SPE, 2008. [3] S. Farimani Khoshbazm, M. Vafaie Sefti, and S. Masoudi. "Wax Deposition Modeling in Oil Pipelines Combined with the Wax Precipitation Kinetics." Journal of Petroleum Research 24, no. 77 (2014): 89-99. [4] B. Bertrand, G. Ségéral, and P.O. Moksnes. "Detection and identification of scales using dual energy/venturi subsea or topside multiphase flow meters." In Offshore Technology Conference, pp. OTC-13152. OTC, 2001. [5] P. Rostron. "Critical review of pipeline scale measurement technologies." Indian Journal of Science and Technology 11, no. 17 (2018): 1-18. [6] D.F. Oliveira, J.R. Nascimento, C.A. Marinho, and R.T. Lopes. "Gamma transmission system for detection of scale in oil exploration pipelines." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 784 (2015): 616-620. [7] T. Bjørnstad, and E. Stamatakis. "Scaling studies with gamma transmission technique." (2006). [8] W.J. Song, S.H. Lee, and H.D. Jeong. "DEVELOPMENT OF DEPOSIT DETECTION SYSTEM IN PIPELINES OF THE STEELWORKS USING CS‐137 GAMMA‐RAY." In AIP Conference Proceedings, vol. 975, no. 1, pp. 1374-1380. American Institute of Physics, 2008. [9] W. Harara. "Deposit thickness measurement in pipes by tangential radiography using gamma ray sources." Russian Journal of Nondestructive Testing 44, no. 11 (2008): 796-802. [10] J.P. Candeias, D.F.D. Oliveira, M.J.D. Anjos, and R.T. Lopes. "Scale analysis using X-ray microfluorescence and computed radiography." Radiation Physics and Chemistry 95 (2014): 408-411. [11] C.M. Salgado, and T. Teixeira. "Use of transmission gamma for study of calculation of incrustation thickness in oil pipelines." (2017). [12] T.P. Teixeira, C.M. Salgado, R.S.D.F. Dam, and W.L. Salgado. "Inorganic scale thickness prediction in oil pipelines by gamma-ray attenuation and artificial neural network." Applied Radiation and Isotopes 141 (2018): 44-50. [13] C. Cheng, W.B. Jia, D.Q. Hei, S.Q. Geng, H.T. Wang, and L.T. Xing. "Determination of thickness of wax deposition in oil pipelines using gamma-ray transmission method." Nuclear Science and Techniques 29, no. 8 (2018): 109. [14] Mo. Askari, A. Taheri, M. Mojtahedzadeh Larijani, A. Movafeghi, and H. Faripour. "A gamma-ray tomography system to determine wax deposition distribution in oil pipelines." Review of Scientific Instruments 90, no. 7 (2019). [15] W.L. Salgado, R.S.D.F. Dam, T.P. Teixeira, C.C. Conti, and C.M. Salgado. "Application of artificial intelligence in scale thickness prediction on offshore petroleum using a gamma-ray densitometer." Radiation Physics and Chemistry 168 (2020): 108549. [16] T.P. Teixeira, M.C. Santos, C.M. Barbosa, W.L. Salgado, R.S.F. Dam, C.M. Salgado, R. Schirru, and R. Lopes. "Determination of eccentric deposition thickness on offshore horizontal pipes by gamma-ray densitometry and artificial intelligence technique." Applied Radiation and Isotopes 165 (2020): 109221. [17] D.F. Swinehart. "The beer-lambert law." Journal of chemical education 39, no. 7 (1962): 333. [18] CATIA V5 Fundamentals, www. http://handbook5.com/c/catia-v5-fundamentals-w3524.html. [19] M. Sharifzadeh, H. Afarideh, H. Khalafi, and R. Gholipour. "A Matlab-based Monte Carlo algorithm for transport of gamma-rays in matter." Monte Carlo Methods and Applications 21, no. 1 (2015): 77-90. | ||
آمار تعداد مشاهده مقاله: 98 تعداد دریافت فایل اصل مقاله: 76 |